

# PRELIMINARY SITE INVESTIGATION N10167

# **Greenscape Design**

Proposed development located at:

No. 10 Ben Bullen Place,

Goulburn NSW 2580

Wednesday, 27th November 2024

# NEO CONSULTING

# **Report Distribution**

# **Preliminary Site Investigation**

Address: No. 10 Ben Bullen Place, Goulburn NSW 2580

Report No: N10167

Date: Wednesday, 27th November 2024

| Copies                                          | Recipient/Custodian                                            |
|-------------------------------------------------|----------------------------------------------------------------|
| 1 Soft Copy (PDF) – Secured and issued by email | Greenscape Julie Pritchard E: e. julie@greenscapedesign.com.au |

1 Original – Saved to NEO Consulting Archives Secured and Saved by NEO Consulting on Register.

| Version | Prepared by                                | Reviewed by                        | Date issue                     |
|---------|--------------------------------------------|------------------------------------|--------------------------------|
| Draft   | Sarah Houlahan<br>Environmental Consultant | Nick Caltabiano<br>Project Manager | 27 <sup>th</sup> November 2024 |
|         | <u> Ba</u>                                 | plate.                             |                                |
| Final   | Sarah Houlahan<br>Environmental Consultant | Nick Caltabiano<br>Project Manager | 5 <sup>th</sup> December 2024  |
|         | Ba                                         | plake.                             |                                |

| Report Revision | Details      | Report No. | Date | Amended By |
|-----------------|--------------|------------|------|------------|
| 0               | FINAL Report |            |      | -          |
| Issued By:      |              |            |      |            |

**Nick Caltabiano** 

1/ah

This report may only be reproduced or reissued in electronic or hard copy format by its rightful custodians listed above, with written permission by NEO Consulting. This report is protected by copyright law.



# Table of Contents

| Executive Summary                                                                       | 5  |
|-----------------------------------------------------------------------------------------|----|
| 1. Introduction                                                                         | 6  |
| 1.1 Background                                                                          | 6  |
| 1.2 Objectives                                                                          | 6  |
| 1.3 Regulatory Framework                                                                | 6  |
| 2. Scope of Work                                                                        | 6  |
| 3. Site Details                                                                         | 7  |
| 4. Site Condition                                                                       | 7  |
| 5. Site History                                                                         | 7  |
| 5.1 History of Site                                                                     | 7  |
| 5.2 Section 10.7 (2) & (5) Planning Certificate                                         | 7  |
| 5.3 NSW EPA Notified Sites                                                              | 7  |
| 5.4 NSW EPA Contaminated Land Register                                                  | 8  |
| 5.5 Protection of the Environment Operation Act (POEO) Public Register                  | 8  |
| 5.6 SafeWork NSW Dangerous Goods                                                        | 8  |
| 5.7 Product Spill and Loss History                                                      | 8  |
| 5.8 NSW EPA PFAS Investigation Program                                                  | 8  |
| 6. Environmental Setting                                                                | 8  |
| 6.1 Hydrogeology and Groundwater                                                        | 8  |
| 6.2 Geology                                                                             | 8  |
| 6.3 Acid Sulphate Soil                                                                  | 8  |
| 6.4 Site Drainage                                                                       | 8  |
| 6.5 Soil Landscape                                                                      | 8  |
| 7. Areas of Environmental Concern                                                       | 10 |
| 8. Conceptual Site Model                                                                | 11 |
| 9. Assessment Criteria                                                                  | 12 |
| 9.1 NEPM Health Investigation Level A (HIL-A) – Residential                             | 12 |
| 9.2 NEPM Health Screening Level A (HSL-A) – Residential                                 | 13 |
| 9.3 NEPM Ecological Investigation Level (EIL) – Urban Residential and Public Open Space | 13 |
| 9.4 NEPM Ecological Screening Level (ESL) – Urban Residential and Public Open Space     | 14 |
| 9.5 NEPM Management Limits – Residential, Parkland and Public Open Space                | 14 |
| 9.6 NEPM Health Screening Level A (HSL-A) – Residential for Asbestos                    | 15 |
| 10. Sampling and Analysis Plan                                                          | 15 |
| 10.1 Sampling Rationale                                                                 | 15 |
| 10.2 Field Sampling Methodology                                                         | 15 |
| 10.3 Field Quality Assurance & Quality Control Procedures                               | 16 |
| 10.4 Laboratory Quality Assurance & Quality Control Procedures                          | 16 |
| 11. Data Quality Objectives                                                             | 17 |
| 12. Analytical Results                                                                  | 18 |
| 12.1 Soil Analytical Results                                                            | 18 |



| 13. Data Quality Indicators | 18 |
|-----------------------------|----|
| 14. Data Gaps               | 20 |
| 15. Conclusion              | 20 |
| 16. Recommendations         | 20 |
| Limitations                 | 21 |

# **Appendices**

Appendix A – Figures and Photographic Log

Appendix B – Analytical Results and Laboratory Reports

Appendix C – Property Report and Relevant Site Data



# **Executive Summary**

NEO Consulting was appointed by Greenscape Design (the client) to undertake a Preliminary Site Investigation (PSI) for the property located at No. 10 Ben Bullen Place, Goulburn NSW 2580 (the site). The site is legally defined as Lot 156/-/DP248976, has an approximate total area of 2,089.45m², and is currently zoned as R2 – Low Density Residential. The proposed development for the site is the construction of a childcare facility with on ground carparking area.

The following scope of works were undertaken:

- A site inspection to identify potential sources of contamination on site;
- Soil sampling for chemical analysis;
- Review of historical investigations relating to the site (if any);
- Review of local Council records and planning certificates;
- Review of the NSW EPA Contaminated Land Records, Protection of the Environment Operation (POEO) Register and PFAS Investigation Program map;
- Review of local geological and hydrogeological information, including an evaluation of the NSW Groundwater registered groundwater bore database;
- Review of Acid Sulphate Soil data maps;
- Development of a Conceptual Site Model (CSM) to identify the connections between potential sources of contamination and exposure pathways, human and/or ecological receptors; and
- Recommendations for additional investigations (if any), based on the identified data gaps and findings of this report.

A site investigation was undertaken on 17<sup>th</sup> November 2024 by qualified environmental consultants. During the site inspection, a soil investigation program was undertaken with a judgemental approach across the site to identify areas of contamination. Nine (9) primary soil samples were obtained from nine (9) test pit locations. The samples were submitted to a National Association of Testing Authorities, Australia (NATA) accredited laboratory for analysis of Chemicals of Potential Concern (CoPC) that may have impacted the site during historical or present activities.

The preliminary analytical results indicate no exceedances above the NEPM Health and Ecological Assessment Criteria for Residential (A) sites.

The consent authority may be satisfied that the required considerations of CI 4.6 of State Environmental Planning Policy (Resilience and Hazards) 2021 are satisfied for the following reasons:

- 1. Site observations did not indicate significant visible indications of contamination or contaminating sources;
- 2. Analytical results for all analytes were below the NEPM Health and Ecological Assessment Criteria for Residential (A).

NEO Consulting considers that the potential for significant contamination of soil to be low and find that the site is suitable for the proposed land use, provided the Recommendations within Section 16 are undertaken.



# 1. Introduction

# 1.1 Background

NEO Consulting was appointed by Greenscape Design (the client) to undertake a Preliminary Site Investigation (PSI) for the property located at No. 10 Ben Bullen Place, Goulburn NSW 2580 (the site). The site is legally defined as Lot 156/-/DP248976, has an approximate total area of 2,089.45m², and is currently zoned as R2 – Low Density Residential. The proposed development for the site is the construction of a childcare facility with on ground carparking area.

A site inspection was undertaken on 17<sup>th</sup> November 2024 by qualified environmental consultants. Reporting, photographs and sampling were conducted on this day and with reference to the relevant regulatory criteria (2. Scope of Work). Further information of the inspection is described in 4. Site Condition.

# 1.2 Objectives

This report provides a preliminary assessment of current and/or historical potentially contaminating activities that may have impacted the soils and to determine if the site is suitable for the proposed development and land use.

#### 1.3 Regulatory Framework

This PSI has been prepared in general accordance with the following regulatory framework:

- State Environmental Planning Policy (Resilience and Hazard) 2021;
- National Environment Protection Measures (NEPM), 2013;
- NSW Environmental Protection Authority, Guidelines on the Duty to Report Contamination under Contaminated Land Management Act, 1997;
- NSW Environmental Protection Authority, Consultants Reporting on Contaminated Land: Contaminated Land Guidelines, 2020;
- Protection of the Environment and Operation Act 1997; and
- Protection of the Environment Operations (Waste) Regulations, 2005.

#### 2. Scope of Work

To meet the requirements in Section 1.3 of this report, the following scope of works were included:

- A site inspection to identify potential sources of contamination on site;
- Soil sampling for chemical analysis;
- Review of historical investigations relating to the site (if any);
- Review of local Council records and planning certificates;
- Review of the NSW EPA Contaminated Land Records, Protection of the Environment Operation (POEO) Register and PFAS Investigation Program map;
- Review of local geological and hydrogeological information, including an evaluation of the NSW Groundwater registered groundwater bore database;
- Review of Acid Sulphate Soil data maps;
- Development of a Conceptual Site Model (CSM) to identify the connections between potential sources of contamination and exposure pathways, human and/or ecological receptors; and
- Recommendations for additional investigations (if any), based on the identified data gaps and findings of this report.



### 3. Site Details

#### Table 1. Site Details

| Address        | No. 10 Ben Bullen Place, Goulburn NSW 2580 |
|----------------|--------------------------------------------|
| Deposited plan | Lot 156/-/DP248976                         |
| Zoning         | R2 – Low Density Residential               |
| Area           | 2,089.45m <sup>2</sup>                     |
| LGA            | Goulburn Mulwaree Council                  |

#### Table 2. Surrounding land-use

| Direction from site | Land-use         |
|---------------------|------------------|
| North               | Residential lots |
| East                | Residential lots |
| South               | Residential lots |
| West                | Residential lots |

#### 4. Site Condition

A site inspection was undertaken on 17<sup>th</sup> November 2024 by NEO Consulting. During the site inspection, the following observations were noted (photographs in **Appendix A**):

- The site was a residential lot free from building structures and hardstands;
- The groundcover was unsealed across the extent of the site with healthy overgrown grass cover;
- No indications of underground storage of petroleum products were identified;
- No malodourous indications of contamination were identified;
- No visual or aesthetic issues identified.

# 5. Site History

#### 5.1 History of Site

Table 3. Historical aerial images of the site and surrounding area.

| Description                                                                            |
|----------------------------------------------------------------------------------------|
| The site was a semi-rural low vegetated lot free from structures. The surrounding area |
| contained low density residential and rural lots.                                      |
| The site was unchanged. The surrounding area increased in developments.                |
| The site was largely unchanged, trailers were stored on site. The surrounding area was |
| largely unchanged.                                                                     |
| The site and surrounding area remained largely unchanged.                              |
|                                                                                        |

#### 5.2 Section 10.7 (2) & (5) Planning Certificate

A Section 10.7 Planning Certificate describes how a property may be used and the restrictions on development. The Planning Certificate is issued under Section 149 of the Environmental Planning and Assessment Act 1979. At the time of reporting, the Planning Certificate was not provided at the time of preparation.

#### **5.3 NSW EPA Notified Sites**

**NEO CONSULTING PTY LTD** 

A search within the NSW EPA Notified Sites was undertaken for the site. No results were found for the site or land within 200m of the site.



#### 5.4 NSW EPA Contaminated Land Register

A search within the NSW EPA contaminated land register was undertaken for the site. No results were found for the site or land within 200m of the site.

#### 5.5 Protection of the Environment Operation Act (POEO) Public Register

A search on the POEO public register of licensed and delicensed premises (DECC) was undertaken for the site. No results were found for the site or land within 200m of the site.

#### 5.6 SafeWork NSW Dangerous Goods

Based on site observation and aerial images, a search was not undertaken with SafeWork NSW for historical dangerous goods.

#### 5.7 Product Spill and Loss History

The visual site inspection did not identify evidence of contamination within the site (e.g. chemical staining, unhealthy vegetation).

#### 5.8 NSW EPA PFAS Investigation Program

A search on the NSW EPA PFAS Investigation Program map was undertaken for the site. No results were found for the site or land within 200m of the site.

# 6. Environmental Setting

# 6.1 Hydrogeology and Groundwater

A groundwater bore search was undertaken with WaterNSW and no groundwater monitoring bores were found within 500m of this location. It was beyond the scope of works to study the groundwater flow direction. However, based on the regional topography, groundwater is expected to flow south east towards Wollondilly River.

#### 6.2 Geology

The Geological Map of Newcastle (Geological Map Goulburn \$1 55-1, Scale 1:250,000, Second Edition), published by the Geological Survey of NSW indicates the site is underlain by Boxers Creek Formation (Late Silurian), regionally characterised by very thin to very thick-bedded (up to 3m) fine- to very coarse-grained feldspar-lithic-quartz sandstone, siltstone, shale. Crystal-rich in places. Metasedimentary, tuffaceous chert and meta-vein quartz lithic fragments commonly comprise 20-40 percent.

#### 6.3 Acid Sulphate Soil

Acid Sulphate Soils (ASS) naturally occur under waterlogged condition and contain iron sulphide minerals. If these soils remain undisturbed, they are considered harmless. However, if disturbed and subsequently oxidised, this reaction can cause damage to the environment and built structures that overlie the ASS. A search of the DPIE eSpade map viewer was undertaken and indicate that site is located within an area with no data.

#### 6.4 Site Drainage

Site drainage is likely to be consistent with the local topography. Stormwater is likely collected by pit and pipe drainage flowing into the municipal stormwater system, which likely flows towards Wollondilly River. Additionally, large portions of the site consist of accessible soils, which allow for direct infiltration into the subsoil.

#### 6.5 Soil Landscape

A review of the regional maps by the NSW Department of Planning, Industry and Environment indicates the site is generally located within the Monastery Hill soil landscape. The landscape has formed on teschenite



(dolerite) intrusions. On crests and sideslopes are duplex orange coloured soils with acid to alkaline reaction, no development of A2 horizons and massive to moderately structured upper B horizons. These are similar to yellowish Chocolate Soils (Db3.11, Dy4.12, Dy5.53). Below about 1 m an alkaline mottled grey clay occurs. Prairie Soils (Gn4.42), Grey Clays (Ug6.2) and Alluvial Soils (Um1) occur on footslopes and in drainage lines. More information on this landscape can be found in Scown, Murphy and Johnston (1988).

- Dominance: Dominant;
- Landform element: Crests, sideslopes;
- Surface condition: Friable;
- Drainage: Impeded;
- Soil permeability: Moderate;
- Watertable depth: 100cm;
- Available water-holding capacity: High;
- Depth to bedrock >120cm;
- Flood hazard: Not present;
- pH (topsoil): 6.5;
- Fertility (chemical): Moderate;
- Known nutrient deficiencies: N, P, K, S;
- Soil salinity: Not evident;
- Erodibility (topsoil): Moderate;
- Erodibility (subsoil): Low;
- Erosion hazard: Low;
- Structural degradation hazard: Low;
- Land capability classification: III, IV;
- USCS (subsoil): CL, CH;
- Shrink-swell potential: Moderate;
- Mass movement hazard: Not evident.



# 7. Areas of Environmental Concern

Based on the above information, the potential Areas of Environmental Concern (AEC) and their associated Contaminants of Potential Concern (CoPC) for the site were identified.

Table 4. Potential Areas and Contaminants of Concern

| AEC         | Potentially Contaminating / Hazardous Activity                            | CoPC                                           | Likelihood<br>of Site<br>Impact | Comments                                                                                                                                                              |
|-------------|---------------------------------------------------------------------------|------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entire site | Importation of fill<br>material.<br>Historical site operations<br>and use | Metals, TRH,<br>BTEX, PAH,<br>OCP, OPP,<br>ACM | Moderate                        | The presence of imported fill is possible. Historical on site operations may have given rise to contamination events. The site may have been used for industrial use. |

Abbreviations: Asbestos Containing Materials (ACM), Benzene, Toluene, Ethylbenzene and Xylene (BTEX), Polycyclic Aromatic Hydrocarbon (PAH), Organophosphate Pesticides (OPP), Organochlorine Pesticides (OCP), Total Recoverable Hydrocarbons (TRH).



# 8. Conceptual Site Model

A Conceptual Site Model (CSM) was developed to provide an indication of potential risks associated with contamination source and contamination migration pathways, receptors and exposure mechanisms. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation. Here, we consider the connections between the following elements:

- Potential contamination sources and their associated CoPC;
- Potential human receptors that may be impacted by the site contamination are current and future site users including occupants to the dwelling/infrastructures onsite, site workers and the general public within the immediate vicinity of the site;
- Potential environmental receptors to the site including but not limited to: groundwater and surface water bodies, residual soils at and/or nearby the site;
- Potential exposure pathways; and
- Whether source-pathway-receptor connections are complete based on current and future site conditions.

Table 5. Conceptual Site Model

#### **Potential Sources**

Contaminated soil from importation of uncontrolled fill across the site;

Contaminated soil from historical on-site operations and site use;

| Potential Receptor                          | Potential<br>Contaminated<br>Media | Potential<br>Exposure<br>Pathway                                                               | Complete<br>Connection  | Risk | Justification/<br>Control Measures                                                                         |
|---------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------|-------------------------|------|------------------------------------------------------------------------------------------------------------|
| Site users, general public,                 | Soil                               | Dermal<br>contact,                                                                             | Complete<br>(current)   | М    | Exposure to potentially                                                                                    |
|                                             |                                    | inhalation of fibres/particles                                                                 | Complete<br>(Future)    | Μ    | contaminated soils is possible.                                                                            |
| Residential occupants of nearby homes, site | Soil vapour                        | Vapour<br>intrusion                                                                            | Complete<br>(current)   | М    | Top-down contamination                                                                                     |
| users and general public                    |                                    |                                                                                                | Complete<br>(Future)    | М    | possible. Indications of                                                                                   |
| Root uptake,<br>microbial community,        | Soils (FILL/topsoil and natural)   | Migration of contamination                                                                     | Complete<br>(current)   | L    | imported material were                                                                                     |
| soil dwelling<br>invertebrates              |                                    | from top-down<br>spills/leaks/<br>deposition                                                   | Complete<br>(Future)    | L    | encountered in unsealed areas.                                                                             |
| Wollondilly River >100m south east,         | NAPL, dissolved phase              | Transportation of via surface waters. Leaching and migration through groundwater infiltration. | Incomplete<br>(current) | L    | If contamination of surface waters                                                                         |
| estuarine habitat                           | groundwater                        |                                                                                                | Incomplete<br>(Future)  | L    | occurs, they may reach these receptors. Ground water flow direction is inferred to flow towards the north. |



# 9. Assessment Criteria

The following assessment criteria were adopted for the investigation.

# 9.1 NEPM Health Investigation Level A (HIL-A) – Residential

HILs are scientific, risk-based guidance levels to be used as in the primary stage of assessing soil contamination to evaluate the potential risks to human health from chronic exposure to contaminants. HILs are applicable to a broad range of metals and organic substances, and generally apply to depths up to 3m below the surface for residential use. Tier 1 HILs are divided into sub-criteria. The sub-criteria appropriate to the site is HIL A – residential with garden/accessible soils.

Table 6. HIL-A

| Assessment Criteria            | HIL-A, mg/kg |
|--------------------------------|--------------|
|                                |              |
| Heptachlor                     | 6            |
| Chlordane                      | 50           |
| Aldrin & Dieldrin              | 6            |
| Endrin                         | 10           |
| DDD+DDE+DDT                    | 240          |
| Endosulfan                     | 270          |
| Methoxychlor                   | 300          |
| Mirex                          | 10           |
| Chlorpyrifos                   | 160          |
| Arsenic, As                    | 100          |
| Cadmium, Cd                    | 20           |
| Chromium, Cr                   | 100          |
| Copper, Cu                     | 6,000        |
| Lead, Pb                       | 300          |
| Nickel, Ni                     | 400          |
| Zinc, Zn                       | 7,400        |
| Mercury, Hg                    | 40           |
| Carcinogenic PAHs (as BaP TEQ) | 3            |
| Total PAH (18)                 | 300          |
| PCBs (Total)                   | 1            |
|                                |              |



# 9.2 NEPM Health Screening Level A (HSL-A) – Residential

HSLs have been developed for selected petroleum compounds and fractions and are used for the assessment of potential risks to human health from chronic inhalation and direct contact pathways of petroleum vapour emanating off petroleum contaminated soils (Vapour Risk). HSLs are guided by land-use scenarios, specific soil physicochemical properties and generally apply to depths below surface to >4m. Tier 1 HSLs are divided into sub-criteria. The sub-criteria appropriate to the site is HSL A – residential with garden/accessible soils.

Table 7. HSL-A

| Assessment Criteria                             | HSL-A for Vapour Intrusion, 0-<br><1m depth, Clay, mg/kg | HSL-A for Vapour Intrusion, 1-<br><2m depth, Clay, mg/kg |
|-------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Benzene                                         | 0.7                                                      | 1                                                        |
| Toluene                                         | 480                                                      | NL                                                       |
| Ethylbenzene                                    | NL                                                       | NL                                                       |
| Xylenes                                         | 110                                                      | 310                                                      |
| Naphthalene                                     | 5                                                        | NL                                                       |
| TRH C <sub>6</sub> -C <sub>10</sub> - BTEX (F1) | 50                                                       | 90                                                       |
| TRH >C <sub>10</sub> -C <sub>16</sub> - N (F2)  | 280                                                      | NL                                                       |
|                                                 |                                                          |                                                          |

#### 9.3 NEPM Ecological Investigation Level (EIL) – Urban Residential and Public Open Space

Ecological investigation levels (EILs) have been developed to assess the risk for the presence of metals and organic substance in a terrestrial ecosystem. ElLs are guided by land-use scenarios, specific soil physicochemical properties and generally apply to the top 2m of soil. The NEPM Soil Quality Guidelines (SQG) for ElLs are calculated using the Added Contamination Limit (ACL) to determine the amount of contamination that had to be added to the soil to cause toxicity, including ambient background concentration (ABC).

Table 8. Generic EIL

| Assessment Criteria | Generic EIL for Urban Residential and Public Open Space, mg/kg |
|---------------------|----------------------------------------------------------------|
| Arsenic, As         | 100                                                            |
| DDT                 | 180                                                            |
| Naphthalene         | 170                                                            |



# 9.4 NEPM Ecological Screening Level (ESL) – Urban Residential and Public Open Space

ESLs have been developed for selected petroleum hydrocarbons (BTEX, benzo(a)pyrene, TRH F1 and F2) in soil, based on fresh contamination. These parameters are applicable to coarse and fine-grained soil and apply from the surface of the soil to 2m below ground level, which corresponds with the root and habitat zone for many species.

Table 9. ESL

| Assessment Criteria                        | Soil ESL for Urban Residential and Public Open Space, fine-<br>grained soil, mg/kg |
|--------------------------------------------|------------------------------------------------------------------------------------|
| Benzene                                    | 65                                                                                 |
| Toluene                                    | 105                                                                                |
| Ethylbenzene                               | 125                                                                                |
| Xylenes                                    | 45                                                                                 |
| BaPyr (BaP)                                | 0.7                                                                                |
| TRH C6-C10                                 | 180                                                                                |
| TRH >C <sub>10</sub> -C <sub>16</sub>      | 120                                                                                |
| TRH >C <sub>16</sub> -C <sub>34</sub> (F3) | 1,300                                                                              |
| TRH >C <sub>34</sub> -C <sub>40</sub> (F4) | 5,600                                                                              |

# 9.5 NEPM Management Limits – Residential, Parkland and Public Open Space

Management Limits for petroleum have been developed for prevention of explosive vapour accumulation, prevention of the formation of observable Light Non-Aqueous Phase Liquids (LNAPL) and protection against effects on buried infrastructure. Residential, Parkland and Public Open Space limits have been adopted based on the proposed land use.

Table 10. Management Limits

| 800   |
|-------|
| 1000  |
| 3500  |
| 10000 |
|       |



# 9.6 NEPM Health Screening Level A (HSL-A) – Residential for Asbestos

The assessed soil must not contain Asbestos Containing Materials (ACM) in the excess of 0.01%w/w and surface soil within the site must be free of visible ACM, Asbestos Fines (AF) and Fibrous Asbestos (FA).

Table 11. Management Limits

| Assessment Criteria          | Health Screening Level (%w/w) Residential (A) |
|------------------------------|-----------------------------------------------|
| ACM                          | 0.01%                                         |
| FA and AF (friable asbestos) | 0.001%                                        |
| All forms of asbestos        | No visible asbestos for surface soils         |

# 10. Sampling and Analysis Plan

#### 10.1 Sampling Rationale

Table 12. Sampling Rationale

| Sampling Decision | Chosen Approach                                                           | Justification                                                                                                                                                                                                                       |
|-------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling pattern  | Judgemental sampling                                                      | This pattern was selected due to the area of the site, access to underlying soil, the AEC and CoPC as well as the potential heterogeneity of any contamination.                                                                     |
| Sampling density  | Nine (9) primary soil<br>samples were obtained<br>from nine (9) test pits | This sampling density was selected based on the extent of the potential contaminated area to be detected, feasibility, the site history, distribution of current and historical uses on site, location and condition of structures. |
| Sampling depths   | Topsoil<br>(0.15m)                                                        | The depths weas selected in compliment with sampling density and to target depths of potential contaminants.                                                                                                                        |

#### 10.2 Field Sampling Methodology

A shovel was used for test pit excavation to a depth of 0.3mbgl. Soil samples were collected from shallow topsoil (0.15m bgl) below the surface by clean nitrile gloves and placed in laboratory supplied containers.

All equipment was decontaminated with Decon90 and deionised water between samplings. Samples were stored on ice in an esky while on-site and in transit to a NATA-accredited laboratory for the analysis of the CoPC under Chain of Custody (COC) documentation.

One (1) duplicate sample was obtained at \$5 location.

Table 13. Soil Sampling Information and Laboratory Testing Program

| Sample<br>ID | Depth<br>(m) | Texture                                                                                                                                  | Matrix  | Laboratory Analytical Suite                          |
|--------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------|
| \$1          | 0.15         | Silty to sandy CLAY CL: firm, low plasticity,<br>brown, fine grained sand, poorly sorted<br>rocks, organic, moist, no PACM, no staining. | Topsoil | TRH, BTEXN, PAH, OCP, OPP, PCBs, Metals, Asbestos ID |

□ admin@neoconsulting.com.au



| S2  | 0.15 | Silty to sandy CLAY CL: firm, low plasticity, | Topsoil | TRH, BTEXN, PAH, OCP, OPP, |
|-----|------|-----------------------------------------------|---------|----------------------------|
|     |      | brown, fine grained sand, organic, moist, no  |         | PCBs, Metals, Asbestos ID  |
|     |      | PACM, no staining.                            |         |                            |
| S3  | 0.15 | Silty to sandy CLAY CL: firm, low plasticity, | Topsoil | TRH, BTEXN, PAH, OCP, OPP, |
|     |      | brown, fine grained sand, organic, moist, no  |         | PCBs, Metals, Asbestos ID  |
|     |      | PACM, no staining.                            |         |                            |
| S4  | 0.15 | Silty to sandy CLAY CL: firm, low plasticity, | Topsoil | TRH, BTEXN, PAH, OCP, OPP, |
|     |      | brown, fine grained sand, organic, moist, no  |         | PCBs, Metals, Asbestos ID  |
|     |      | PACM, no staining.                            |         |                            |
| S5  | 0.15 | Silty to sandy CLAY CL: firm, low plasticity, | Topsoil | TRH, BTEXN, PAH, OCP, OPP, |
|     |      | brown, fine grained sand, poorly sorted       |         | PCBs, Metals, Asbestos ID  |
|     |      | rocks, organic, moist, no PACM, no staining.  |         |                            |
| S6  | 0.15 | Silty to sandy CLAY CL: firm, low plasticity, | Topsoil | TRH, BTEXN, PAH, OCP, OPP, |
|     |      | brown, fine grained sand, poorly sorted       |         | PCBs, Metals, Asbestos ID  |
|     |      | rocks, organic, moist, no PACM, no staining.  |         |                            |
| S7  | 0.15 | Silty to sandy CLAY CL: firm, low plasticity, | Topsoil | TRH, BTEXN, PAH, OCP, OPP, |
|     |      | brown, fine grained sand, organic, moist, no  |         | PCBs, Metals, Asbestos ID  |
|     |      | PACM, no staining.                            |         |                            |
| \$8 | 0.15 | Silty to sandy CLAY CL: firm, low plasticity, | Topsoil | TRH, BTEXN, PAH, OCP, OPP, |
|     |      | brown, fine grained sand, organic, moist, no  |         | PCBs, Metals, Asbestos ID  |
|     |      | PACM, no staining.                            |         |                            |
| S9  | 0.15 | Silty to sandy CLAY CL: firm, low plasticity, | Topsoil | TRH, BTEXN, PAH, OCP, OPP, |
|     |      | brown, fine grained sand, organic, moist, no  |         | PCBs, Metals, Asbestos ID  |
|     |      |                                               |         |                            |

#### 10.3 Field Quality Assurance & Quality Control Procedures

The following procedures were undertaken to ensure the data quality:

- Selection of appropriate sampling methods;
- Decontamination procedures;
- Appropriate containers selected for planned analyses;
- Appropriate preservation and storage measures to minimise contamination or analyte loss;
- Statement of duplicate frequency;
- Sampling devices and equipment; and
- Field instrument calibrations.

## 10.4 Laboratory Quality Assurance & Quality Control Procedures

The following procedures were undertaken to ensure the data quality:

- A copy of signed chain-of-custody forms acknowledging receipt date, time and temperature and identity of samples included in shipments;
- Record of holding times;
- Analytical methods used, including any deviations or method detection limit;
- Laboratory accreditation for analytical methods used;
- Laboratory performance for the analytical method using duplicates calculated as Relative Percentage Differences (RPD);
- Surrogates used during extraction process;
- Practical quantification limits (PQL);
- Reference laboratory control sample (LCS) used throughout the full method process from extraction to injection;



- Matrix spikes (MS) indicate percentage of recovery of an expected result, via a known concentration if an analyte spiked in a field sub-sample;
- Laboratory blank results (tabulate);
- Results are within control chart limits; and
- Instrument detection limit.

# 11. Data Quality Objectives

The Data Quality Objectives (DQO) have been developed in accordance with the NEPM Appendix B of Schedule B2 and provide the type, quantity, and quality of data to support decisions regarding the environmental conditions of this site.

Table 13. Data Quality Objectives Steps 1 to 7

| Step 1: State the problem                          | The proposed development includes the construction of a childcare facility. Ground disturbance is considered likely and therefore contamination condition of the underlying soil is required to be understood. Additionally, the intended future use of the site is considered a sensitive human health risk setting due to proposed site users and potential for access to soils through landscaping/outdoor play area.                                                                                                                                                                                                                                             |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 2: Identify the decision                      | Site characterisation is required for the site to be considered suitable for its intended land use. The decisions required to meet these goals are as follows:  • Is the sample design appropriate to achieve the aim of the PSI?  • Is on-site contamination capable of migrating off-site?  • Are there any unacceptable risks to the future on site or off-site receptors in the soil or groundwater following remediation?  • Is the site suitable for its intended land use?                                                                                                                                                                                    |
| Step 3: Identify inputs into the decision          | <ul> <li>Identification of issues of potential environmental concern;</li> <li>Judgemental soil sampling undertaken in targeted areas of the site;</li> <li>Soil sample analytical results compared with NEPM Site Assessment Criteria for the intended land use.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                         |
| Step 4: Define the boundaries of the study         | <ul> <li>The project boundaries are:</li> <li>Lateral boundary: The legally defined area of the site;</li> <li>Vertical boundary: The soil interface to the maximum depth reached during sampling; and</li> <li>Temporal boundary: Constrained to a single visit to the site.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                             |
| Step 5: Develop<br>the analytical<br>approach      | The integration of the information from steps 1 – 4 support and justify the proposed analytical approach. The aim is to confirm if the site is suitable for the proposed development. If the SAQP identifies;  • Any exceedance of the adopted NEPM Site Assessment Criteria for soil;  • Professional opinion that further assessment is required;  • Adopted RPD (30% difference for all analytes) for QC data not met;  • Further assessment may be required to confirm suitability of the site if:  • Analytes are in exceedance of the LOR method blanks; or  • RPDs of matrix spikes, surrogates and laboratory control samples are outside acceptable limits. |
| Step 6: Specify performance or acceptance criteria | To determine if the soils are within acceptable ranges, the following NEPM criteria is applied:  • Acceptable recovery on all surrogate spikes used in laboratory analyses;  • Acceptable analytical method to ensure detection limit appropriate for all analytes;                                                                                                                                                                                                                                                                                                                                                                                                  |



|                 | <ul> <li>If these conditions are not met, then chemical analysis will require re-</li> </ul> |
|-----------------|----------------------------------------------------------------------------------------------|
|                 | testing for all samples with fresh aliquot.                                                  |
| Step 7: Develop | Judgemental sampling pattern will provide suitable coverage of the site to                   |
| the plan for    | produce reliable data in alignment with the Data Quality Indicators (DQIs) to                |
| obtaining data  | cover precision, accuracy, representativeness, completeness and comparability                |
|                 | (PARCC).                                                                                     |

# 12. Analytical Results

### 12.1 Soil Analytical Results

The preliminary analytical results indicate no exceedances above the NEPM Health and Ecological Assessment Criteria for Residential (A) sites.

The duplicate sample was within acceptable RPD% (<30% inorganics, <50% organics).

Refer to **Appendix B** for analytical results.

# 13. Data Quality Indicators

The reliability of field procedures and analytical results were assessed against the following data quality indicators (DQIs):

- Completeness a measure of the amount of usable data from a data collection activity;
- Comparability the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness the confidence (qualitative) of data representativeness of media present on
- Precision a measure of variability or reproducibility of data; and
- Accuracy a measure of closeness of the data to the 'true' value.

Table 15. Data Quality Indicators (DQIs)

| Considerations      | Action                                                                                                                                          |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Completeness                                                                                                                                    |
| Critical locations  | Samples were collection was judgmental based on the PSI                                                                                         |
| sampled             | Objectives and CSM. Collection during a single visit to the site.                                                                               |
| Samples collected   | Sampling plan was followed as outlined in Section 10. Samples were                                                                              |
| (depth)             | obtained to a depth of 0.15m bgl as per the NEPM 2013 Schedule B2                                                                               |
| , , ,               | and targeted at characterising soil underneath previous onsite                                                                                  |
|                     | structure.                                                                                                                                      |
| Experienced sampler | Experienced environmental scientists/consultants led the field team.                                                                            |
| Documentation       | The NEO environmental scientist/consultants completed a Chain of                                                                                |
| correct             | Custody (CoC), site data collection and bore logs.                                                                                              |
| CoPC analysed       | Analysis of appropriate analytes. Implementation of appropriate                                                                                 |
| according to the    | sample preparation, chemical extraction and analytical instrument                                                                               |
| CoC                 | methods.                                                                                                                                        |
| Appropriate         | NATA approved methods were adopted by the selected analytical                                                                                   |
| methods and LOR     | laboratory. LORs and practical quantitation limits in accordance with NATA.                                                                     |
|                     | Critical locations sampled  Samples collected (depth)  Experienced sampler Documentation correct CoPC analysed according to the CoC Appropriate |



|            | documentation complete                                                  | appended to the report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Compliant sample holding times                                          | Samples were received, extracted and injected/analysed within specified holding times.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                         | Comparability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Field      | Sample collection and volume                                            | Uniform methods for sample collection including collection equipment and decontamination procedures. Correct volume of soi per sample.  At all sample locations, soil samples were collected from 0.15mbgl within the testpit. Samples were placed in laboratory supplied jars using nitrile gloves replaced between samples.                                                                                                                                                                                                                    |
| Laboratory | Sample analytical<br>methods used                                       | The laboratory used is accredited by NATA for the analyses undertaken. Laboratory analytical methods were the same for each sample, for the same analyte, in the same laboratory, and are as stated on the Certificates of Analysis.  Appropriate extraction methods and analytical methods, including instrument calibration and Practical Quantification Limits (PQL). These considerations provide qualitative confidence that the data reflects the site conditions. All considerations were undertaken. RPDs were within acceptable ranges. |
|            | Analytical LOR                                                          | LOR set by the laboratory are below the adopted Site Assessment Criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | Same laboratories                                                       | SGS was used for all sample analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | Analytical units                                                        | Laboratory results are expressed in consistent units for each media / analyte and compared with adopted Site Assessment Criteria units.                                                                                                                                                                                                                                                                                                                                                                                                          |
|            |                                                                         | Representativeness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Field      | Appropriate media sampled                                               | Appropriate media were sampled considered to be potentially impacted by the CoPC. These considerations provide qualitative confidence that the data reflects the site conditions.                                                                                                                                                                                                                                                                                                                                                                |
| Laboratory | Appropriate laboratory procedures in accordance with NATA accreditation | Correct documentation and COC procedures undertaken.  Implementation of appropriate analytical and instrument methods.  Internal methods ensure detection of laboratory artefacts including contaminated extraction equipment, cross-contamination events.                                                                                                                                                                                                                                                                                       |
|            |                                                                         | Precision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Field      | QA/QC Samples                                                           | Field QA/QC sampling were not undertaken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Laboratory | Analysis of method<br>blank, matrix and<br>surrogate spikes             | Laboratory QA/QC samples provide a quantitative measure of analytical precision. These data measure variability between samples. Recoveries on all surrogates and blanks were within acceptable ranges.                                                                                                                                                                                                                                                                                                                                          |
|            | Field duplicates                                                        | Field duplicated were not undertaken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



| Field      | Appropriate field procedures                                        | Correct documentation and COC procedures undertaken including appropriate transportation. Collection during a single visit to the site. Decontamination procedures undertaken between each sample collection.                                                                                 |
|------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laboratory | Analysis of reagent blanks                                          | The reagent blank samples were generally within laboratory acceptance standards.                                                                                                                                                                                                              |
|            | Analysis of matrix and surrogate spikes, laboratory control samples | The matrix spike samples were generally within laboratory acceptance standards. Spikes chosen based on appropriateness to avoid coelution with contaminants indigenous to the samples and across varying retention times to map response factor.  Control samples analysed at a rate of 1:20. |

# 14. Data Gaps

Condition of underlying natural soils.

#### 15. Conclusion

Based on the site investigation and analytical results, NEO Consulting considers that the potential for significant contamination of soil to be low. We find that the site is suitable for the proposed development and NEPM 2013 Residential (A) land use, provided the Recommendations within **Section 16** are undertaken.

#### 16. Recommendations

Based on the information collected and available during this investigation, the following recommendations have been made:

- Any soils requiring excavation, onsite reuse and/or removal must be classified in accordance with "Waste Classification Guidelines Part 1: Classifying Waste" NSW EPA (2014); and
- A site specific 'Unexpected Finds Protocol' is to be made available for reference for all occupants and/or site workers in the event unanticipated contamination is discovered.



#### Limitations

The findings of this report are based on the Scope of Work outlined in Section 2. NEO Consulting performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental consulting profession. No warranties, express or implied are made.

The results of this assessment are based upon the information documented and presented in this report. All conclusions and recommendations regarding the site are the professional opinions of NEO Consulting personnel involved with the project, subject to the qualifications made above. While normal assessments of data reliability have been made, NEO Consulting assumes no responsibility or liability for errors in any data obtained from regulatory agencies, statements from sources outside of NEO Consulting, or developments resulting from situations outside the scope of this project.

The results of this assessment are based on the site conditions identified at the time of the site inspection and validation sampling. NEO Consulting will not be liable to revise the report to account for any changes in site characteristics, regulatory requirements, assessment criteria or the availability of additional information, subsequent to the issue date of this report.

NEO Consulting is not engaged in environmental consulting and reporting for the purpose of advertising sales promoting, or endorsement of any client interests, including raising investment capital, recommending investment decisions, or other publicity purposes.

#### **NEO CONSULTING**

Prepared by:

Sarah Houlahan

**Environmental Consultant** 

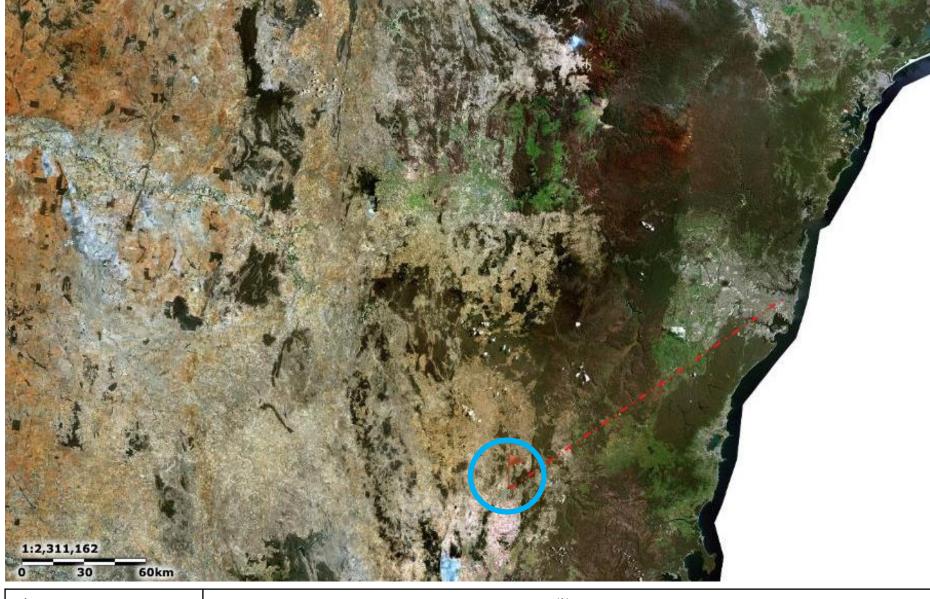
Reviewed by:

Nick Caltabiano

N.ah.

Project Manager




# APPENDIX A

Figures and Photographic Log

# NEO CONSULTING



Figure 1: The site is located south of Sydney CBD.



Site location

Source: Six Maps

Figure 1 Locality Map

Project 10 Ben Bullen Place, Goulburn NSW 2580



Figure 2: Site plan and sampling locations.



Test pit location

Source: Near Maps

| Figure 2 | Site Plan and Sample location          |
|----------|----------------------------------------|
| Project  | 10 Ben Bullen Place, Goulburn NSW 2580 |



Figure 3. Aerial view of the site and surrounding area, 1978. The site was a semi-rural vegetated lot free from structures. The surrounding area contained low density residential and rural lots.



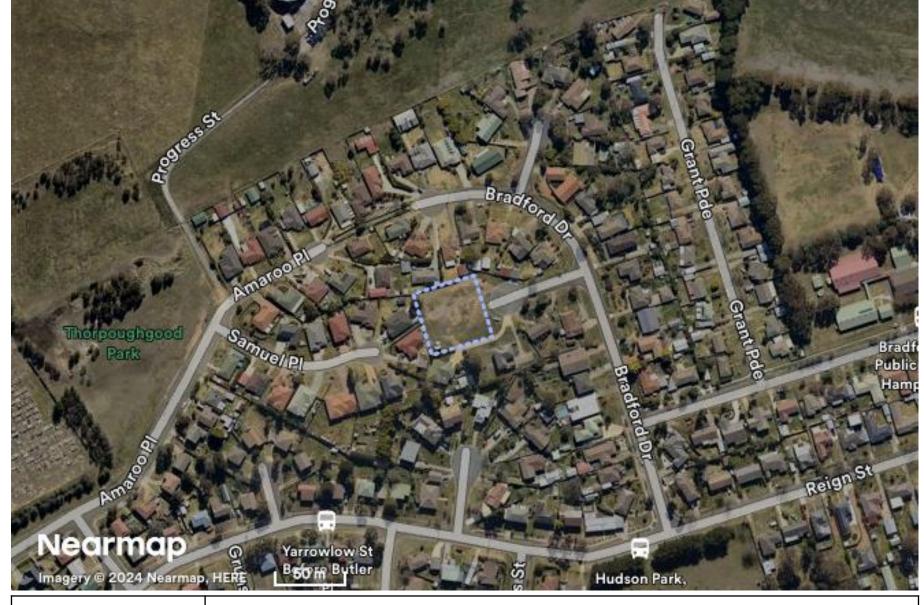
Figure 3 Historical Photograph: 1978

Project 10 Ben Bullen Place, Goulburn NSW 2580

Source: Historical Aerial Imagery



Figure 4. Aerial view of the site and surrounding area, 1997. The site was unchanged. The surrounding area increased in developments.




| Figure 4 | Historical Photograph: 1997            |
|----------|----------------------------------------|
| Project  | 10 Ben Bullen Place, Goulburn NSW 2580 |

Source: Historical Aerial Imagery



Figure 5. Aerial view of the site and surrounding area, 2014. The site was largely unchanged, trailers were stored on site. The surrounding area was largely unchanged.



| Figure 5 | Historical Photograph: 2014            |
|----------|----------------------------------------|
| Project  | 10 Ben Bullen Place, Goulburn NSW 2580 |

Source: Historical Aerial Imagery



Figure 6-7. The site was a vegetated lot free from structures.



Figure 8-9. Soil sample collection using a shovel. The soil was silty to sandy clay.



# APPENDIX B

Analytical Results and Laboratory Reports

# NEO CONSULTING

**Table 15**. Total Recoverable Hydrocarbon (TRH) analytical results. Values are presented as mg/kg. NL = Not Limiting. F1 = subtract the sum of BTEX concentrations from the  $C_6$ - $C_{10}$  aliphatic hydrocarbon fraction. F2 = subtract Naphthalene from the>  $C_{10}$ - $C_{16}$  aliphatic hydrocarbon fraction.

| Assessment Criteria                                                                                       |                                                                                                             | TRH C <sub>6</sub> -C <sub>10</sub> | TRH C <sub>6</sub> -C <sub>10</sub> - BTEX (F1) | TRH >C <sub>10</sub> -C <sub>16</sub> | TRH >C <sub>10</sub> -C <sub>16</sub> - N (F2) | TRH >C <sub>16</sub> -C <sub>34</sub> (F3) | TRH >C <sub>34</sub> -C <sub>40</sub> (F4) |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------|---------------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------------------|
|                                                                                                           | NEPM 2013 Residential Soil HSL-A for Vapour<br>Intrusion, 0-<1m depth, Clay, mg/kg                          |                                     | 50                                              |                                       | 280                                            |                                            |                                            |
| NEPM 2013 Soil Generic ESL for Urban,<br>Residential and Public Open Spaces, fine-<br>grained soil, mg/kg |                                                                                                             | 180                                 |                                                 | 120                                   |                                                | 1300                                       | 5600                                       |
| Parkland and Public                                                                                       | NEPM 2013 Management Limits for Residential,<br>Parkland and Public Open Space, fine-grained<br>soil, mg/kg |                                     |                                                 | 1000                                  |                                                | 3500                                       | 10 000                                     |
| Sample                                                                                                    | Depth (m)                                                                                                   | mg/kg                               | mg/kg                                           | mg/kg                                 | mg/kg                                          | mg/kg                                      | mg/kg                                      |
| \$1                                                                                                       | 0.15                                                                                                        | <10                                 | <10                                             | <10                                   | <10                                            | 35                                         | <20                                        |
| \$2                                                                                                       | 0.15                                                                                                        | <10                                 | <10                                             | <10                                   | <10                                            | 120                                        | 21                                         |
| \$3                                                                                                       | 0.15                                                                                                        | <10                                 | <10                                             | <10                                   | <10                                            | 98                                         | <20                                        |
| \$4                                                                                                       | 0.15                                                                                                        | <10                                 | <10                                             | <10                                   | <10                                            | 60                                         | <20                                        |
| \$5                                                                                                       | 0.15                                                                                                        | <10                                 | <10                                             | <10                                   | <10                                            | 38                                         | <20                                        |
| \$6                                                                                                       | 0.15                                                                                                        | <10                                 | <10                                             | 22                                    | 22                                             | 67                                         | <20                                        |
| \$7                                                                                                       | 0.15                                                                                                        | <10                                 | <10                                             | <10                                   | <10                                            | 81                                         | <20                                        |
| \$8                                                                                                       | 0.15                                                                                                        | <10                                 | <10                                             | <10                                   | <10                                            | 78                                         | 22                                         |
| S9                                                                                                        | 0.15                                                                                                        | <10                                 | <10                                             | <10                                   | <10                                            | 94                                         | <20                                        |
| Duplicate                                                                                                 |                                                                                                             | <10                                 | <10                                             | <10                                   | <10                                            | 43                                         | <20                                        |

**Table 16**. Benzene, Toluene, Ethylbenzene and Xylene (BTEX) analytical results. Values are presented as mg/kg. NL = Not Limiting.

|                                                                                               | sment Criteria                                       | Benzene | Toluene | Ethylbenzene | Xylenes |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------|---------|---------|--------------|---------|
|                                                                                               | I HSL-A for Vapour Intrusion, 0-<1m<br>, Clay, mg/kg | 0.7     | 480     | NL           | 110     |
| NEPM 2013 Soil ESL for Urban, Residential and Public Open<br>Spaces, fine-grained soil, mg/kg |                                                      | 65      | 105     | 125          | 45      |
| Sample                                                                                        | Depth (m)                                            | mg/kg   | mg/kg   | mg/kg        | mg/kg   |
| \$1                                                                                           | 0.15                                                 | <0.1    | <0.1    | <0.1         | <0.3    |
| \$2                                                                                           | 0.15                                                 | <0.1    | <0.1    | <0.1         | <0.3    |
| \$3                                                                                           | 0.15                                                 | <0.1    | <0.1    | <0.1         | <0.3    |
| \$4                                                                                           | 0.15                                                 | <0.1    | <0.1    | <0.1         | <0.3    |
| \$5                                                                                           | 0.15                                                 | <0.1    | <0.1    | <0.1         | <0.3    |
| \$6                                                                                           | 0.15                                                 | <0.1    | <0.1    | <0.1         | <0.3    |
| \$7                                                                                           | 0.15                                                 | <0.1    | <0.1    | <0.1         | <0.3    |
| \$8                                                                                           | 0.15                                                 | <0.1    | <0.1    | <0.1         | <0.3    |
| \$9                                                                                           | 0.15                                                 | <0.1    | <0.1    | <0.1         | <0.3    |
| Duplicate                                                                                     |                                                      | <0.1    | <0.1    | <0.1         | <0.3    |

**Table 17.** Polycyclic Aromatic Hydrocarbon (PAH) analytical results. The carcinogenic PAH (Benzo(a)anthracene (BaAnt); Benzo(a)pyrene (BaPyr or BaP); Benzo(b+j) fluoranthene (BbjFl); Benzo(k)fluoranthene (BkFl); Benzo(g,h,i)perylene (BghiPer); Chrysene (Chr); and Dibenz(a,h)anthracene (DBahAnt)) potency is calculated relative to Benzo(a)pyrene to produce a Toxicity Equivalent Factor (TEF). The Toxicity Equivalent Quotient (TEQ) is calculated by multiplying the concentration of each carcinogenic PAH in the sample by its Benzo(a)pyrene (B(a)P) TEF. Total PAH includes Naphthalene (N), 2-methylnaphthalene (2-MN), 1-methylnaphthalene (1-MN), Acenaphthylene (Acy), Acenaphthene (Ace), Fluorene (F), Phenanthrene (P), Anthracene (Ant), Fluoranthene (Fl), Pyrene (Pyr)

and the carcinogenic PAHs. Values are presented as mg/kg. NL = Not Limiting.

| Assessm                                                                             | ent Criteria                                    | Naphthalene | Benzo(a)pyrene | Carcinogenic PAH<br>(as BaP TEQ) | Total PAH (18) |
|-------------------------------------------------------------------------------------|-------------------------------------------------|-------------|----------------|----------------------------------|----------------|
|                                                                                     | ial Soil HSL-A for Vapour<br>depth, Clay, mg/kg | 5           |                |                                  |                |
|                                                                                     | Generic EIL for Urban<br>lic Open Space, mg/kg  | 170         |                |                                  |                |
| Soil ESL for Urban, Residential and Public Open<br>Spaces, fine-grained soil, mg/kg |                                                 |             | 0.7            |                                  |                |
| NEPM 2013 Reside                                                                    | NEPM 2013 Residential Soil HIL-A, mg/kg         |             | 1.00 TEF       | 3                                | 300            |
| Sample                                                                              | Depth (m)                                       | mg/kg       | mg/kg          | TEQ (mg/kg)                      | mg/kg          |
| \$1                                                                                 | 0.15                                            | <0.1        | <0.1           | <1.7                             | <1.7           |
| \$2                                                                                 | 0.15                                            | <0.1        | <0.1           | <1.7                             | <1.7           |
| \$3                                                                                 | 0.15                                            | <0.1        | <0.1           | <1.7                             | <1.7           |
| \$4                                                                                 | 0.15                                            | <0.1        | <0.1           | <1.7                             | <1.7           |
| \$5                                                                                 | 0.15                                            | <0.1        | <0.1           | <1.7                             | <1.7           |
| \$6                                                                                 | 0.15                                            | <0.1        | <0.1           | <1.7                             | <1.7           |
| \$7                                                                                 | 0.15                                            | <0.1        | <0.1           | <1.7                             | <1.7           |
| \$8                                                                                 | 0.15                                            | <0.1        | <0.1           | <1.7                             | <1.7           |
| S9                                                                                  | 0.15                                            | <0.1        | <0.1           | <1.7                             | <1.7           |
| Duplicate                                                                           |                                                 | <0.1        | <0.1           | <1.7                             | <1.7           |

**Table 18.** Heavy Metal analytical results. Values are presented as mg/kg.

| Table 10. Heavy Melait                                                           | able 16. Heavy Metal analytical resolts. Values are presented as mg/kg. |       |       |              |            |          |            |          |             |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------|-------|--------------|------------|----------|------------|----------|-------------|
| Assessme                                                                         | Assessment Criteria                                                     |       |       | Chromium, Cr | Copper, Cu | Lead, Pb | Nickel, Ni | Zinc, Zn | Mercury, Hg |
| NEPM 2013 Resider                                                                | NEPM 2013 Residential Soil HIL-A, mg/kg                                 |       | 20    | 100          | 6000       | 300      | 400        | 7400     | 40          |
| NEPM 2013 Soil Generic EIL for Urban Residential and Public<br>Open Space, mg/kg |                                                                         | 100   |       |              |            | 1100     |            |          |             |
| Sample                                                                           | Depth (m)                                                               | mg/kg | mg/kg | mg/kg        | mg/kg      | mg/kg    | mg/kg      | mg/kg    | mg/kg       |
| \$1                                                                              | 0.15                                                                    | 10    | <0.2  | 13           | 9          | 6        | 97         | 64       | <0.05       |
| \$2                                                                              | 0.15                                                                    | 9     | <0.2  | 14           | 12         | 7        | 120        | 49       | 0.05        |
| \$3                                                                              | 0.15                                                                    | 4     | <0.2  | 9            | 8          | 4        | 11         | 26       | <0.05       |
| \$4                                                                              | 0.15                                                                    | 8     | <0.2  | 14           | 21         | 9        | 15         | 62       | <0.05       |
| \$5                                                                              | 0.15                                                                    | 3     | <0.2  | 17           | 9          | 18       | 10         | 28       | <0.05       |
| \$6                                                                              | 0.15                                                                    | 5     | <0.2  | 16           | 31         | 4        | 25         | 45       | 0.06        |
| \$7                                                                              | 0.15                                                                    | 7     | <0.2  | 9            | 8          | 4        | 15         | 30       | 0.06        |
| \$8                                                                              | 0.15                                                                    | 7     | <0.2  | 22           | 14         | 7        | 18         | 40       | <0.05       |
| \$9                                                                              | 0.15                                                                    | 15    | <0.2  | 20           | 33         | 7        | 24         | 30       | 0.09        |
| Duplicate                                                                        |                                                                         | 5     | <0.2  | 14           | 7          | 8        | 15         | 17       | <0.05       |

**Table 19.** PCBs analytical results. Values are presented as mg/kg.

|                   |                        | presented as mg/kg. |  |
|-------------------|------------------------|---------------------|--|
| Assessme          | nt Criteria            | РСВ                 |  |
| NEPM 2013 Residen | tial Soil HIL-A, mg/kg | 1                   |  |
| Sample            | Depth (m)              | mg/kg               |  |
| \$1               | 0.15                   | <1                  |  |
| \$2               | 0.15                   | <1                  |  |
| \$3               | 0.15                   | <1                  |  |
| \$4               | 0.15                   | <1                  |  |
| \$5               | 0.15                   | <1                  |  |
| \$6               | 0.15                   | <1                  |  |
| \$7               | 0.15                   | <1                  |  |
| \$8               | 0.15                   | <1                  |  |
| \$9               | 0.15                   | <1                  |  |
| Duplicate         |                        | <1                  |  |

**Table 20.** Asbestos analytical results. Values are presented as %w/w.

| Assessmen            | Asbestos             |          |            |           |
|----------------------|----------------------|----------|------------|-----------|
| NEPM 2013 Residentic | al Soil HSL-A, mg/kg | Detected | Bonded ACM | FA and AF |
|                      | 1                    |          | 0.01%w/w   | 0.001%w/w |
| Sample               | Depth (m)            | Y/N      | %w/w       | %w/w      |
| \$1                  | 0.15                 | N        | <0.01      | NA        |
| \$2                  | 0.15                 | N        | <0.01      | NA        |
| \$3                  | 0.15                 | N        | <0.01      | NA        |
| \$4                  | 0.15                 | N        | <0.01      | NA        |
| \$5                  | 0.15                 | N        | <0.01      | NA        |
| \$6                  | 0.15                 | N        | <0.01      | NA        |
| \$7                  | 0.15                 | N        | <0.01      | NA        |
| \$8                  | 0.15                 | N        | <0.01      | NA        |
| \$9                  | 0.15                 |          | <0.01      | NA        |
| Duplicate            |                      | N        | <0.01      | NA        |

**Table 21.** Pesticide analytical results. Values are presented as mg/kg.

|             | ment Criteria                                              | Heptachlor | Chlordane | Aldrin &<br>Dieldrin | Endrin | DDT   | DDD+DDE+DDT | Endosulfan | Methoxychlor | Chlorpyrifos |
|-------------|------------------------------------------------------------|------------|-----------|----------------------|--------|-------|-------------|------------|--------------|--------------|
|             | Residential Soil HIL-<br>., mg/kg                          | 6          | 50        | 6                    | 10     |       | 240         | 270        | 300          | 160          |
| Urban Resid | Soil Generic EIL for<br>dential and Public<br>space, mg/kg |            |           |                      |        | 180   |             |            |              |              |
| Sample      | Depth (m)                                                  | mg/kg      | mg/kg     | mg/kg                | mg/kg  | mg/kg | mg/kg       | mg/kg      | mg/kg        | mg/kg        |
| \$1         | 0.15                                                       | <1         | <1        | <1                   | <0.5   | <0.5  | <1.5        | <1         | <0.5         | <0.5         |
| S2          | 0.15                                                       | <1         | <1        | <1                   | <0.5   | <0.5  | <1.5        | <1         | <0.5         | <0.5         |
| \$3         | 0.15                                                       | <1         | <1        | <1                   | <0.5   | <0.5  | <1.5        | <1         | <0.5         | <0.5         |
| S4          | 0.15                                                       | <1         | <1        | <1                   | <0.5   | <0.5  | <1.5        | <1         | <0.5         | <0.5         |
| \$5         | 0.15                                                       | <1         | <1        | <1                   | <0.5   | <0.5  | <1.5        | <1         | <0.5         | <0.5         |
| S6          | 0.15                                                       | <1         | <1        | <1                   | <0.5   | <0.5  | <1.5        | <1         | <0.5         | <0.5         |
| S7          | 0.15                                                       | <1         | <1        | <1                   | <0.5   | <0.5  | <1.5        | <1         | <0.5         | <0.5         |
| \$8         | 0.15                                                       | <1         | <1        | <1                   | <0.5   | <0.5  | <1.5        | <1         | <0.5         | <0.5         |
| S9          | 0.15                                                       | <1         | <1        | <1                   | <0.5   | <0.5  | <1.5        | <1         | <0.5         | <0.5         |
| Duplicate   |                                                            | <1         | <1        | <1                   | <0.5   | <0.5  | <1.5        | <1         | <0.5         | <0.5         |

| SGS Environmental Services Sydney Unit 16, 33 Maddox Street Alexandria NSW 2015 Telephone No: (02) 85940490 Facsimile No: (02) 85940499 Email: au.samplereceipt.sydney@sgs.com Lab ID Number: (please quote on correspondence)  Total Delay of the first of the synthetic street of the synthetic stre |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| SGS Environmental Services Sydney Unit 16, 33 Maddox Street Alexandria NSW 2015 Telephone No: (02) 85940409 Email: au.samplereceipt.sydney@sgs.com Lab ID Number: (please quote on correspondence)  Matrix (Tick as appropriate)  Matrix (Tick as appropriate)  Client Sample ID  Sampling Date/ Time  Title No: (02) 85940409  Email: au.samplereceipt.sydney@sgs.com Lab ID Number: (please quote on correspondence)  Contact Name: Nick Callabiano  No: Results Required Date: Telephone: 0416680375  Fax:  Contact Name: Nick Callabiano  Remail Results and invoices to: Distance Consulting, admin@neoconsulting, ehsan@neo  No: Quotation No: Place Now 2765  Results Required Date: 0416680375  Fax:  Contact Name: Nick Callabiano  ANALYSIS REQUESTED  ANALYSIS REQUESTED  ANALYSIS REQUESTED  No: Matrix (Tick as appropriate)  No: Quotation No: Place Now 7/4  Address: Results and invoices to: Distance Consulting, admin@neoconsulting, ehsan@neo  No: Quotation No: Place Now 7/4  Aldress: Results Required Date: Distance Consulting, admin@neoconsulting, ehsan@neo  No Additional Report For Support For  |           |
| Address   Address   Address   Address   Address   Results Required   Date:   Session   Date:   |           |
| Telephone No: (02) 85940490   Fax:   Telephone No: (02) 85940499   Telephone Noise    |           |
| Email: au.samplereceipt.sydney@sgs.com Lab ID Number: (please quote on correspondence)  Hand ID Number: (please quote on correspondence)    Quotation No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| SGS ID Client Sample ID Sampling Date/ Time  Quotation No:  Quotation No:    Quotation No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| SGS ID Client Sample ID Sampling Date/ Time System Fig. 1. Sampling Date/ Time System Special instruct Speci | onsulting |
| SGS ID Client Sample ID Sampling Date/ Time Signal Superior Superi | rmats     |
| Client Sample ID   Date/ Time   Sign   Sig   |           |
| Special instruct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LOR/      |
| S1 X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ons       |
| 2 S2 X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 3 S3 X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 4 S4 X X SGS Melbourne EHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| S S X X X S S WEIDUITE LIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 6 S6 X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 7 S7 X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 8 × × × ME368667 COC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 9 S9 X X X Received: 20 - Nov - 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| C6 Duplicate X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Relinquished By: Chris C  Date/Time: 20.11.24 (Melbourne)  Received By: Shirtyster  Date/Time: 2011 1-39pm - when (exerved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ات        |
| Relinquished By:  Date/Time:  Received By:  Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| Samples Intact: Yes / No Temperature: °C Sample Security Sealed: Yes / No Hazards: e.g. may contain Asbestos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
| Comments / Subcontracting details:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |



# FW: [EXTERNAL] Re: Chain of custody request for soli samples dropped off

From Prasad, Sandhya (Brisbane) <Sandhya.Prasad@sgs.com>

Date Wed 11/20/2024 11:09 AM

AU.SampleReceipt.Melbourne, AU (Melbourne) < Au.samplereceipt.melbourne@sgs.com> 2

AU.SampleReceipt.GBS, AU (Alexandria) <AU.SampleReceipt.GBS@sgs.com>; Douglas, Karen (Notting Hill) <Karen.Douglas@sgs.com>

2 attachments (2 MB)

N10167.pdf; NEO C-IE-MAR 24 -1655473 SGS Sydney PL2024.pdf;

Hi Shirly

The asbestos analysis will have to be subcontracted to Sydney.

Table 1: Neo Consulting customised packages (v6)

| ENM - TRH/BTE (Rubber, Plastic TRH/BTEXN/PA VCH/SHM (D)/ TRH/BTEXN/PA VCH/TRH/BTEXN/PA VCH/TRH/BTEXN/PA S HM (T)/ PCB// B HM (T)/ PCB// S HM (T)/ PCB// S PH(CaCI2)/CEC/ | (an) sagurages (no)          | ACKAGE UNIT RATE AUD | ENM - TRH/BTEXN/PAH/8 HM/pH/EC/Foreign Materials (Rubber: Plastic Bitumen Paner Cloth Daint Wood) | (2004), 1001, 1001, 1001 | \$                      | ***                          | /OPP/PCB           | -01                |                         | TRH/BTEXN/PAH/8 HM (T)/OC/OP/VCH |                       | \$                         |                                   | Drganic %/ Fe%              | -   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|---------------------------------------------------------------------------------------------------|--------------------------|-------------------------|------------------------------|--------------------|--------------------|-------------------------|----------------------------------|-----------------------|----------------------------|-----------------------------------|-----------------------------|-----|
|                                                                                                                                                                                                                                                                                               | company of the parkages (vo) | ANALYTICAL PACKAGE   | ENM - TRH/BTEXN/PA<br>(Rubber: Plastic, Bitun                                                     | TRH/BTEXN/PAH/Pb         | TRH/BTEXN/PAH/ 8 HM (D) | TRH/BTEXN/PAH /8 HM (T) /OCP | TRH/BTEXN/PAH /8 H | TRH/BTEXN/PAH/8 HI | VCH/8HM (D)/ PAH/OC/PCB | TRH/BTEXN/PAH/8 HI               | TRH/BTEXN/PAH/8HM (T) | VCH/TRH/BTEXN/PAH/8 HM (D) | 8 HM (T)/ PCB/Asbestos NEPM 500ml | IL SP pH(CaCl2)/CEC/Clay co |     |
|                                                                                                                                                                                                                                                                                               |                              | MEDIA CODE           | S                                                                                                 | S                        | N                       | S                            | S                  | S                  | ×                       | S                                | S                     | ×                          | S                                 | S                           | 147 |

Kind Regards

# Sandhya Prasad

Industries and Environment Client Services Manager - SGS Melbourne

SGS Australia | EHS Cus

From: nick caltabiano <nick@neoconsulting.com.au>

Sent: Wednesday, November 20, 2024 9:59 AM
 To: Prasad, Sandhya (Brisbane) <Sandhya. Prasad@sgs.com>
 Cc: AU.SampleReceipt. Melbourne, AU (Melbourne) <Au.samplereceipt.melbourne@sgs.com>
 Subject: [EXTERNAL] Re: Chain of custody request for soli samples dropped off

\*\*\* WARNING: this message is from an EXTERNAL SENDER. Please be cautious, particularly with links and attachments. \*\*\*

Please find attached Chain of Custody,

Kind regards,

Nick

On Wed, Nov 20, 2024 at 10:14 AM Prasad, Sandhya (Brisbane) <<u>Sandhya.Prasad@sgs.com</u>> wrote:

Hi Nick

Please provide the CoC for the soil samples dropped off so job can be registered

Do you need the sample IDs and sampling dates for these?

le colos

|     | 5225 A                                                      | Was a see   | SGS N | otti | inç   | g H | lill                   | B                         | of                   | ttl                       | e l                     | Иa                               | р                             | fo                  | r١                              | Na                          | ate                     | er                            | &                                | Sc                                            | oil                                            | Sa                                  | am                  | ıpl                         | es                      | 5                                  |                          |                             |                         |                       |                       |                             |                        |             |                                              |
|-----|-------------------------------------------------------------|-------------|-------|------|-------|-----|------------------------|---------------------------|----------------------|---------------------------|-------------------------|----------------------------------|-------------------------------|---------------------|---------------------------------|-----------------------------|-------------------------|-------------------------------|----------------------------------|-----------------------------------------------|------------------------------------------------|-------------------------------------|---------------------|-----------------------------|-------------------------|------------------------------------|--------------------------|-----------------------------|-------------------------|-----------------------|-----------------------|-----------------------------|------------------------|-------------|----------------------------------------------|
| Ter | nperature                                                   | 3.8°        | Ice B | rick | 0     |     | lc                     | е                         | -                    |                           | lo                      |                                  |                               |                     | (                               |                             | Es                      |                               |                                  |                                               |                                                | ag                                  |                     |                             |                         | ОХ                                 |                          | 0                           | В                       |                       | et                    |                             | C                      | U           |                                              |
| Na  | me + Date                                                   | Shirty sten | 20/11 | 10-1 | Sp    | ~   |                        |                           |                      |                           |                         |                                  | B                             | ott                 | le                              | T                           | yp                      | е                             | Ar                               | nd                                            | P                                              | re                                  | se                  | rv                          | ati                     | or                                 | ۱ ٦                      | УI                          | pe                      |                       |                       |                             |                        |             |                                              |
|     | Sampl                                                       | e ID        | Tray# | Soil | Water | Oil | 1L Unpreserved Plastic | 1L HNO3 Preserved Plastic | 1L Unpreserved Glass | 500mL Unpreserved Plastic | 500mL Unpreserved Glass | 250mL Unpreserved Plastic Bottle | 250mL Unpreserved Plastic Jar | 250mL H2SO4 Plastic | 250mL Zn acetate & NaOH Plastic | 250mL Unpreserved Glass Jar | 200mL Unpreserved Glass | 150mL Unpreserved Plastic Jar | 125mL Unpreserved Plastic Bottle | 125mL HNO3 (Filtered) Plastic (Dissolved meta | 125mL HNO3 (Unfiltered) Plastic (Total Metals) | 125mL NaOH Preserved Plastic Bottle | 125mL H2SO4 Plastic | 125mL Unpreserved Glass Jar | 100mL Unpreserved Glass | 70mL Unpreserved Plastic Container | 50mL Unpreserved Plastic | 40mL Unpreserved Glass vial | 40mL Na2S2O3 Glass vial | 40mL H2SO4 Glass vial | 40mL NH4CI Glass vial | 40mL Diluted HCI Glass vial | 10mL Unpreserved Glass | Plastic bag | Number of labels to be printed per sample ID |
| 1   | THE RESIDENCE IN COLUMN 2 IS NOT THE RESIDENCE AND ADDRESS. | 10 perlac   | RF    | X    |       |     |                        |                           |                      |                           |                         |                                  |                               |                     |                                 | 1                           |                         |                               |                                  |                                               |                                                |                                     |                     |                             |                         |                                    |                          |                             |                         |                       |                       |                             |                        |             | 1                                            |
| 2   |                                                             | 1           | 1     | 1    |       |     | П                      |                           |                      |                           |                         |                                  |                               |                     |                                 | 1                           |                         |                               |                                  |                                               |                                                |                                     |                     |                             |                         |                                    |                          |                             |                         |                       | П                     |                             |                        | П           | 1                                            |
| 3   |                                                             |             |       |      |       |     |                        |                           |                      |                           |                         |                                  |                               |                     |                                 | 1                           |                         |                               |                                  |                                               |                                                |                                     |                     |                             |                         |                                    |                          |                             |                         |                       |                       |                             |                        |             | 1                                            |
| 4   |                                                             |             |       |      |       |     |                        |                           |                      |                           |                         |                                  |                               |                     |                                 | 1                           |                         |                               |                                  |                                               |                                                |                                     |                     |                             |                         |                                    |                          |                             |                         |                       |                       |                             |                        |             | 1                                            |
| 5   |                                                             |             |       |      |       |     |                        |                           |                      |                           |                         |                                  |                               |                     |                                 | 1                           |                         |                               |                                  |                                               |                                                |                                     |                     |                             |                         |                                    |                          |                             |                         |                       |                       |                             |                        |             | 1                                            |
| 6   |                                                             |             |       |      |       |     |                        |                           |                      |                           |                         |                                  |                               |                     |                                 | 1                           |                         |                               |                                  |                                               |                                                |                                     |                     |                             |                         |                                    |                          |                             |                         |                       |                       |                             |                        |             | 1                                            |
| 7   |                                                             |             |       |      |       |     |                        |                           |                      |                           |                         |                                  |                               |                     |                                 | (                           |                         |                               |                                  |                                               |                                                |                                     |                     |                             |                         |                                    |                          |                             |                         |                       |                       |                             |                        |             | 1                                            |
| 8   |                                                             |             |       |      |       |     |                        |                           |                      |                           |                         |                                  |                               |                     |                                 | 1                           |                         |                               |                                  |                                               |                                                | 7                                   |                     |                             |                         |                                    |                          |                             |                         |                       |                       |                             |                        |             | f                                            |
| 9   |                                                             |             |       |      |       |     |                        |                           |                      |                           |                         |                                  |                               |                     |                                 | 1                           |                         |                               |                                  |                                               |                                                |                                     |                     |                             |                         |                                    |                          |                             |                         |                       |                       | 4                           |                        |             | 1                                            |
| 10  | +                                                           |             | 1     | A    |       |     |                        |                           |                      |                           |                         |                                  |                               |                     |                                 | (                           |                         |                               |                                  |                                               |                                                |                                     |                     |                             |                         |                                    |                          |                             |                         |                       |                       |                             |                        |             | 1                                            |

Comments: no corc was provided by chest asked sardhya farhelp.







CLIENT DETAILS -

LABORATORY DETAILS -

Contact

Nick Caltabiano

Client

NEO CONSULTING PTY LTD

Address

PO BOX 279

**RIVERSTONE NSW 2765** 

Address

Email

Manager

Laboratory

Notting Hill Victoria 3168

SGS Melbourne EH&S

10/585 Blackburn Road

Adam Atkinson

Telephone

0416 680 375 | 0455 485 502

Facsimile

(Not specified)

Email

nick@neoconsulting.com.au

N10167

Project N10167 Order Number 10 Samples

+61395743200 Telephone +61395743399 Facsimile

Au.SampleReceipt.Melbourne@sgs.com ME368667 R0

SGS Reference Date Received

Date Reported

20 Nov 2024 28 Nov 2024

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562 (14420).

Asbestos analysis subcontracted to SGS Sydney, Unit 16 33 Maddox St Alexandria NSW 2015, NATA Accreditation Number: 2562, Site Number: 4354, SE274553.

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam

8270:Majority of spike recoveries are within acceptance criteria.

MA30: RPD failed acceptance criteria due to sample heterogeneity.

MA30: Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).

SIGNATORIES

Andrew WRIGHT LC/VOC Team Leader Christopher BENNETT Team Leader (Inorganics/Metals) Susan WAN Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and

Bldg 10, 585 Blackburn Rd

Notting Hill VIC

t +61 3 9574 3200

Sum Wan

f +61 3 9574 3399

www.sgs.com.au



ME368667 R0

|                                                     |               | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | ME368667.001<br>Soil<br>20 Nov 2024<br>S1 | ME368667.002<br>Soil<br>20 Nov 2024<br>S2 | ME368667.003<br>Soil<br>20 Nov 2024<br>S3 | ME368667.004<br>Soil<br>20 Nov 2024<br>S4 |
|-----------------------------------------------------|---------------|--------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Parameter                                           | Units         | LOR                                                          |                                           |                                           |                                           |                                           |
| Moisture Content Method: AN002 Tested: 21/11/202    | 4             |                                                              |                                           |                                           |                                           |                                           |
| % Moisture                                          | %w/w          | 1                                                            | 13.6                                      | 21.0                                      | 13.4                                      | 14.2                                      |
| USEPA 8260B Volatile Organic Compounds in Solids/So | ils Method: U | ISEPA 8260 B T                                               | ested: 21/11/202                          | 4                                         |                                           |                                           |
| m&p-Xylenes                                         | mg/kg         | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                      |
| Total BTEX                                          | mg/kg         | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Monocyclic Aromatic Hydrocarbons                    |               |                                                              |                                           |                                           |                                           |                                           |
| Benzene                                             | mg/kg         | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                      |
| Toluene                                             | mg/kg         | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                      |
| Ethylbenzene                                        | mg/kg         | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                      |
| o-Xylenes                                           | mg/kg         | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                      |
| Polycyclic Aromatic Hydrocarbons                    |               |                                                              |                                           |                                           |                                           |                                           |
| Naphthalene (VOC)                                   | mg/kg         | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                      |
| Surrogates                                          |               |                                                              |                                           |                                           |                                           |                                           |
| Toluene-d8 (surrogate)                              | %             | -                                                            | 87                                        | 74                                        | 85                                        | 73                                        |
| Volatile Petroleum Hydrocarbons in soil Method: MA3 | 0-VPH Tested  | d: 21/11/2024                                                |                                           |                                           |                                           |                                           |
| TRH C6-C9 (P&T)                                     | mg/kg         | 10                                                           | <10                                       | <10                                       | <10                                       | <10                                       |
| TRH C6-C10 (P&T)                                    | mg/kg         | 10                                                           | <10                                       | <10                                       | <10                                       | <10                                       |
| TRH C6-C10 (P&T) less BTEX (F1)                     | mg/kg         | 10                                                           | <10                                       | <10                                       | <10                                       | <10                                       |

28-November-2024 Page 2 of 19





Heptachlor

# **ANALYTICAL REPORT**

|                                                  |                 | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | ME368667.001<br>Soil<br>20 Nov 2024<br>S1 | ME368667.002<br>Soil<br>20 Nov 2024<br>S2 | ME368667.003<br>Soil<br>20 Nov 2024<br>S3 | ME368667.00<br>Soil<br>20 Nov 2024<br>S4 |
|--------------------------------------------------|-----------------|--------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|
| Parameter                                        | Units           | LOR                                                          |                                           |                                           |                                           |                                          |
| TRH in soil MA-30.SL.01 Method: MA30 Tested: 2   |                 |                                                              |                                           |                                           |                                           |                                          |
| Training on max colocion modifical maxico        |                 |                                                              |                                           |                                           |                                           |                                          |
| TRH C6-C9 (P&T)                                  | mg/kg           | 10                                                           | <10                                       | <10                                       | <10                                       | <10                                      |
| TRH C10-C14                                      | mg/kg           | 10                                                           | <10                                       | <10                                       | <10                                       | <10                                      |
| TRH >C10-C16                                     | mg/kg           | 10                                                           | <10                                       | <10                                       | <10                                       | <10                                      |
| TRH>C10-C16 less naphthalene (F2)                | mg/kg           | 10                                                           | <10                                       | <10                                       | <10                                       | <10                                      |
| TRH >C16-C34 (F3)                                | mg/kg           | 20                                                           | 35                                        | 120                                       | 98                                        | 60                                       |
| TRH C15-C28                                      | mg/kg           | 20                                                           | 21                                        | 53                                        | 52                                        | 39                                       |
| TRH C29-C36                                      | mg/kg           | 20                                                           | <20                                       | 73                                        | 54                                        | 29                                       |
| C6-C10 (P&T) less BTEX (F1)                      | mg/kg           | 10                                                           | <10                                       | <10                                       | <10                                       | <10                                      |
| Total TRH C10-C36                                | mg/kg           | 20                                                           | 21                                        | 130                                       | 110                                       | 68                                       |
| TRH >C34-C40 (F4)                                | mg/kg           | 20                                                           | <20                                       | 21                                        | <20                                       | <20                                      |
| TRH C6-C10 (P&T)                                 | mg/kg           | 10                                                           | <10                                       | <10                                       | <10                                       | <10                                      |
| Total TRH C6-C36                                 | mg/kg           | 20                                                           | 21                                        | 130                                       | 110                                       | 68                                       |
| Total TRH C6-C40 (F)                             | mg/kg           | 20                                                           | 35                                        | 140                                       | 98                                        | 60                                       |
| TRH >C10-C40 (F)                                 | mg/kg           | 20                                                           | 35                                        | 140                                       | 98                                        | 60                                       |
| 8270D.SL.01 SVOCs All in Solids/Soils Method: MA | 8270 Tested: 21 | 1/11/2024                                                    |                                           |                                           |                                           |                                          |
| 1-Methylnaphthalene                              | mg/kg           | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                     |
| 2-Methylnaphthalene                              | mg/kg           | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                     |
| 4,4-DDD                                          | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| 4,4-DDE                                          | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| 4,4-DDT                                          | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| Acenaphthene                                     | mg/kg           | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                     |
| Acenaphthylene                                   | mg/kg           | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                     |
| Aldrin                                           | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| alpha-BHC                                        | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| alpha-Chlordane                                  | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| gamma-Chlordane                                  | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| Anthracene                                       | mg/kg           | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                     |
| Arochlor 1016                                    | mg/kg           | 1                                                            | <1.0                                      | <1.0                                      | <1.0                                      | <1.0                                     |
| Arochlor 1221                                    | mg/kg           | 1                                                            | <1.0                                      | <1.0                                      | <1.0                                      | <1.0                                     |
| Arochlor 1232                                    | mg/kg           | 1                                                            | <1.0                                      | <1.0                                      | <1.0                                      | <1.0                                     |
| Arochlor 1242                                    | mg/kg           | 1                                                            | <1.0                                      | <1.0                                      | <1.0                                      | <1.0                                     |
| Arochlor 1248                                    | mg/kg           | 1                                                            | <1.0                                      | <1.0                                      | <1.0                                      | <1.0                                     |
| Arochlor 1254                                    | mg/kg           | 1                                                            | <1.0                                      | <1.0                                      | <1.0                                      | <1.0                                     |
| Arochlor 1260                                    | mg/kg           | 1                                                            | <1.0                                      | <1.0                                      | <1.0                                      | <1.0                                     |
| Arochlor 1262                                    | mg/kg           | 1                                                            | <1.0                                      | <1.0                                      | <1.0                                      | <1.0                                     |
| Arochlor 1268                                    | mg/kg           | 1                                                            | <1.0                                      | <1.0                                      | <1.0                                      | <1.0                                     |
| Benzo(a)anthracene                               | mg/kg           | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                     |
| Benzo (a) pyrene                                 | mg/kg           | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                     |
| Benzo (b+j) fluoranthene                         | mg/kg           | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                     |
| Benzo (ghi) perylene                             | mg/kg           | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                     |
| Benzo (k) fluoranthene                           | mg/kg           | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                     |
| beta-BHC                                         | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| Chlorpyrifos                                     | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| delta-BHC                                        | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| Dibenz (ah) anthracene                           | mg/kg           | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                     |
| Dieldrin                                         | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| Dimethoate                                       | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| Endosulfan 1                                     | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| Endosulfan 2                                     | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| Endosulfan Sulphate                              | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| Endrin                                           | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| Enghur                                           | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| Famphur                                          | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |
| Fluoranthene                                     | mg/kg           | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                     |
| Fluorene                                         | mg/kg           | 0.1                                                          | <0.1                                      | <0.1                                      | <0.1                                      | <0.1                                     |
| gamma-BHC                                        | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                     |

28-November-2024 Page 3 of 19

0.5

<0.5

<0.5

<0.5



ME368667 R0

|                                                    | •                  | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | Soil<br>20 Nov 2024 | ME368667.002<br>Soil<br>20 Nov 2024<br>S2 | ME368667.003<br>Soil<br>20 Nov 2024<br>S3 | ME368667.004<br>Soil<br>20 Nov 2024<br>S4 |
|----------------------------------------------------|--------------------|--------------------------------------------------------------|---------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Parameter                                          | Units              | LOR                                                          |                     |                                           |                                           |                                           |
| 8270D.SL.01 SVOCs All in Solids/Soils Method: MA 8 | 3270 Tested: 25/11 | /2024 (con                                                   | tinued)             |                                           |                                           |                                           |
| Heptachlor Epoxide                                 | mg/kg              | 0.5                                                          | <0.5                | <0.5                                      | <0.5                                      | <0.5                                      |
| Indeno (1,2,3-cd) pyrene                           | mg/kg              | 0.1                                                          | <0.1                | <0.1                                      | <0.1                                      | <0.1                                      |
| Isodrin                                            | mg/kg              | 0.5                                                          | <0.5                | <0.5                                      | <0.5                                      | <0.5                                      |
| Methoxychlor                                       | mg/kg              | 0.5                                                          | <0.5                | <0.5                                      | <0.5                                      | <0.5                                      |
| Methyl parathion                                   | mg/kg              | 0.5                                                          | <0.5                | <0.5                                      | <0.5                                      | <0.5                                      |
| Naphthalene                                        | mg/kg              | 0.1                                                          | <0.1                | <0.1                                      | <0.1                                      | <0.1                                      |
| O,O,O-Triethylphosphorothioate                     | mg/kg              | 0.5                                                          | <0.5                | <0.5                                      | <0.5                                      | <0.5                                      |
| Phenanthrene                                       | mg/kg              | 0.5                                                          | <0.5                | <0.5                                      | <0.5                                      | <0.5                                      |
| Phorate                                            | mg/kg              | 0.5                                                          | <0.5                | <0.5                                      | <0.5                                      | <0.5                                      |
| Pyrene                                             | mg/kg              | 0.5                                                          | <0.5                | <0.5                                      | <0.5                                      | <0.5                                      |
| Stirofos                                           | mg/kg              | 0.5                                                          | <0.5                | <0.5                                      | <0.5                                      | <0.5                                      |
| Sulfotepp                                          | mg/kg              | 0.5                                                          | <0.5                | <0.5                                      | <0.5                                      | <0.5                                      |
| Thionazin                                          | mg/kg              | 0.5                                                          | <0.5                | <0.5                                      | <0.5                                      | <0.5                                      |
| Total OC Pesticides                                | mg/kg              | 1                                                            | <1.0                | <1.0                                      | <1.0                                      | <1.0                                      |
| Total PCBs                                         | mg/kg              | 1                                                            | <1.0                | <1.0                                      | <1.0                                      | <1.0                                      |
| 2,4,6-Tribromophenol (surrogate)                   | %                  | -                                                            | 58                  | 56                                        | 59                                        | 52                                        |
| Fluorobiphenyl (surrogate)                         | %                  | -                                                            | 86                  | 84                                        | 84                                        | 82                                        |
| Fluorophenol (surrogate)                           | %                  | -                                                            | 134                 | 128                                       | 138                                       | 147                                       |
| Nitrobenzene-D5 (surrogate)                        | %                  | -                                                            | 94                  | 90                                        | 94                                        | 90                                        |
| p-Terphenyl-D14 (surrogate)                        | %                  | -                                                            | 80                  | 78                                        | 78                                        | 80                                        |
| Phenol-D6 (surrogate)                              | %                  | -                                                            | 91                  | 88                                        | 89                                        | 89                                        |
|                                                    | ted: 25/11/2024    | 2                                                            | 10                  | 9                                         | 4                                         | 8                                         |
| Arsenic                                            | mg/kg              |                                                              |                     |                                           |                                           |                                           |
| Cadmium                                            | mg/kg              | 0.2                                                          | <0.2                | <0.2                                      | <0.2                                      | <0.2                                      |
| Chromium                                           | mg/kg              | 2                                                            | 13                  | 14                                        | 9                                         | 14                                        |
| Copper                                             | mg/kg              | 2                                                            | 9                   | 12                                        | 8                                         | 21                                        |
| Lead                                               | mg/kg              | 2                                                            | 97                  | 120<br>0.05                               | 11                                        | 15                                        |
| Mercury                                            | mg/kg              | 0.05                                                         | <0.05<br><b>6</b>   | 7                                         | <0.05<br><b>4</b>                         | <0.05<br><b>9</b>                         |
| Nickel Zinc                                        | mg/kg<br>mg/kg     | 2                                                            | 64                  | 49                                        | 26                                        | 62                                        |
| Fibre Identification in soil Method: AS4964/AN602  | Tested: 26/11/2024 |                                                              |                     |                                           |                                           |                                           |
| Date Analysed*                                     | No unit            | -                                                            | 25/11/2024 00:00    | 25/11/2024 00:00                          | 25/11/2024 00:00                          | 25/11/2024 00:00                          |
| FibreID                                            |                    |                                                              |                     |                                           |                                           |                                           |
| Asbestos Detected                                  | No unit            | -                                                            | No                  | No                                        | No                                        | No                                        |
| SemiQuant                                          |                    |                                                              |                     |                                           |                                           |                                           |
| Estimated Fibres*                                  | %w/w               | 0.01                                                         | <0.01               | <0.01                                     | <0.01                                     | <0.01                                     |
|                                                    |                    |                                                              |                     |                                           |                                           |                                           |

28-November-2024 Page 4 of 19



ME368667 R0

|                                                  |                 | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | ME368667.001<br>Soil<br>20 Nov 2024<br>S1 | ME368667.002<br>Soil<br>20 Nov 2024<br>S2 | ME368667.003<br>Soil<br>20 Nov 2024<br>S3 | ME368667.004<br>Soil<br>20 Nov 2024<br>S4 |
|--------------------------------------------------|-----------------|--------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Parameter                                        | Units           | LOR                                                          |                                           |                                           |                                           |                                           |
| Combined SVOC Pesticides in Solids/Soils Method: | MA 8270 Tested: | 27/11/2024                                                   |                                           |                                           |                                           |                                           |
| Dichlorvos                                       | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Diazinon*                                        | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Fenitrothion                                     | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Malathion                                        | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Parathion                                        | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Bromophos ethyl*                                 | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Methidathion                                     | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Ethion                                           | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Azinphos-methyl                                  | mg/kg           | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Surrogates                                       |                 |                                                              |                                           |                                           | 1                                         |                                           |
| d14-p-terphenyl (Surrogate)                      | %               | -                                                            | 102                                       | 103                                       | 101                                       | 101                                       |

28-November-2024 Page 5 of 19



ME368667 R0

|                                                     |                | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | Soil<br>20 Nov 2024 | ME368667.006<br>Soil<br>20 Nov 2024<br>S6 | ME368667.007<br>Soil<br>20 Nov 2024<br>S7 | ME368667.008<br>Soil<br>20 Nov 2024<br>S8 |
|-----------------------------------------------------|----------------|--------------------------------------------------------------|---------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
|                                                     |                |                                                              | 00                  | 00                                        | 01                                        | 00                                        |
| Parameter                                           | Units          | LOR                                                          |                     |                                           |                                           |                                           |
| Moisture Content Method: AN002 Tested: 21/11/202    | 4              |                                                              |                     |                                           |                                           |                                           |
| % Moisture                                          | %w/w           | 1                                                            | 8.3                 | 16.9                                      | 7.3                                       | 11.2                                      |
| USEPA 8260B Volatile Organic Compounds in Solids/So | oils Method: U | SEPA 8260 B 1                                                | Tested: 21/11/2024  | 4                                         |                                           |                                           |
| m&p-Xylenes                                         | mg/kg          | 0.1                                                          | <0.1                | <0.1                                      | <0.1                                      | <0.1                                      |
| Total BTEX                                          | mg/kg          | 0.5                                                          | <0.5                | <0.5                                      | <0.5                                      | <0.5                                      |
| Monocyclic Aromatic Hydrocarbons                    |                |                                                              |                     |                                           |                                           |                                           |
| Benzene                                             | mg/kg          | 0.1                                                          | <0.1                | <0.1                                      | <0.1                                      | <0.1                                      |
| Toluene                                             | mg/kg          | 0.1                                                          | <0.1                | <0.1                                      | <0.1                                      | <0.1                                      |
| Ethylbenzene                                        | mg/kg          | 0.1                                                          | <0.1                | <0.1                                      | <0.1                                      | <0.1                                      |
| o-Xylenes                                           | mg/kg          | 0.1                                                          | <0.1                | <0.1                                      | <0.1                                      | <0.1                                      |
| Polycyclic Aromatic Hydrocarbons                    |                |                                                              |                     |                                           |                                           |                                           |
| Naphthalene (VOC)                                   | mg/kg          | 0.1                                                          | <0.1                | <0.1                                      | <0.1                                      | <0.1                                      |
| Surrogates                                          |                |                                                              |                     |                                           |                                           |                                           |
| Toluene-d8 (surrogate)                              | %              | -                                                            | 74                  | 85                                        | 74                                        | 77                                        |
| Volatile Petroleum Hydrocarbons in soil Method: MA  | 80-VPH Tested  | i: 21/11/2024                                                |                     |                                           |                                           |                                           |
| TRH C6-C9 (P&T)                                     | mg/kg          | 10                                                           | <10                 | <10                                       | <10                                       | <10                                       |
| TRH C6-C10 (P&T)                                    | mg/kg          | 10                                                           | <10                 | <10                                       | <10                                       | <10                                       |
| TRH C6-C10 (P&T) less BTEX (F1)                     | mg/kg          | 10                                                           | <10                 | <10                                       | <10                                       | <10                                       |

28-November-2024 Page 6 of 19





Heptachlor

# **ANALYTICAL REPORT**

|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                         | Sample Number                         | ME368667.005                                 | ME368667.006                                         | ME368667.007                                         | ME368667.00                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                         | Sample Matrix Sample Date             | Soil<br>20 Nov 2024<br>S5                    | Soil<br>20 Nov 2024<br>S6                            | Soil<br>20 Nov 2024<br>S7                            | Soil<br>20 Nov 2024<br>S8                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                         | Sample Name                           | 33                                           | 30                                                   | 31                                                   | 50                                                                         |
| Parameter                                                                                                                                                                                                                                                                                                                                                                            | Units                                                                                                                                                                   | LOR                                   |                                              |                                                      |                                                      |                                                                            |
| TRH in soil MA-30.SL.01 Method: MA30 Tested: 2                                                                                                                                                                                                                                                                                                                                       | 1/11/2024                                                                                                                                                               |                                       |                                              |                                                      |                                                      |                                                                            |
| TRH C6-C9 (P&T)                                                                                                                                                                                                                                                                                                                                                                      | mg/kg                                                                                                                                                                   | 10                                    | <10                                          | <10                                                  | <10                                                  | <10                                                                        |
| TRH C10-C14                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                   | 10                                    | <10                                          | 14                                                   | <10                                                  | <10                                                                        |
| TRH > C10-C16                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                                                                                                                                                   | 10                                    | <10                                          | 22                                                   | <10                                                  | <10                                                                        |
| TRH>C10-C16 less naphthalene (F2)                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                                                                                                                                                   | 10                                    | <10                                          | 22                                                   | <10                                                  | <10                                                                        |
| TRH >C16-C34 (F3)                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                                                                                                                                                   | 20                                    | 38                                           | 67                                                   | 81                                                   | 78                                                                         |
| TRH C15-C28                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                   | 20                                    | 23                                           | 44                                                   | 41                                                   | 43                                                                         |
| TRH C29-C36                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                   | 20                                    | 21                                           | 37                                                   | 47                                                   | 42                                                                         |
| C6-C10 (P&T) less BTEX (F1)                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                   | 10                                    | <10                                          | <10                                                  | <10                                                  | <10                                                                        |
| Total TRH C10-C36                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                                                                                                                                                   | 20                                    | 44                                           | 95                                                   | 88                                                   | 86                                                                         |
| TRH >C34-C40 (F4)                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                                                                                                                                                   | 20                                    | <20                                          | <20                                                  | <20                                                  | 22                                                                         |
| TRH C6-C10 (P&T)                                                                                                                                                                                                                                                                                                                                                                     | mg/kg                                                                                                                                                                   | 10                                    | <10                                          | <10                                                  | <10                                                  | <10                                                                        |
| Total TRH C6-C36                                                                                                                                                                                                                                                                                                                                                                     | mg/kg                                                                                                                                                                   | 20                                    | 44                                           | 95                                                   | 88                                                   | 86                                                                         |
| Total TRH C6-C40 (F)                                                                                                                                                                                                                                                                                                                                                                 | mg/kg                                                                                                                                                                   | 20                                    | 38                                           | 89                                                   | 81                                                   | 99                                                                         |
| TRH >C10-C40 (F)                                                                                                                                                                                                                                                                                                                                                                     | mg/kg                                                                                                                                                                   | 20                                    | 38                                           | 89                                                   | 81                                                   | 99                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                         |                                       | <u> </u>                                     |                                                      |                                                      |                                                                            |
| 8270D.SL.01 SVOCs All in Solids/Soils Method: MA 8                                                                                                                                                                                                                                                                                                                                   | 3270 Tested: 21                                                                                                                                                         | /11/2024                              |                                              |                                                      |                                                      |                                                                            |
| 1-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                  | mg/kg                                                                                                                                                                   | 0.1                                   | <0.1                                         | <0.1                                                 | <0.1                                                 | <0.1                                                                       |
| 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                  | mg/kg                                                                                                                                                                   | 0.1                                   | <0.1                                         | <0.1                                                 | <0.1                                                 | <0.1                                                                       |
| 4,4-DDD                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                         | 0.5                                   | <0.1                                         | <0.5                                                 | <0.5                                                 | <0.5                                                                       |
| 4,4-DDE                                                                                                                                                                                                                                                                                                                                                                              | mg/kg<br>mg/kg                                                                                                                                                          | 0.5                                   | <0.5                                         | <0.5                                                 | <0.5                                                 | <0.5                                                                       |
| 4,4-DDT                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                   | 0.5                                   | <0.5                                         | <0.5                                                 | <0.5                                                 | <0.5                                                                       |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                                                                                                                                                   | 0.1                                   | <0.1                                         | <0.1                                                 | <0.1                                                 | <0.1                                                                       |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                       | mg/kg                                                                                                                                                                   | 0.1                                   | <0.1                                         | <0.1                                                 | <0.1                                                 | <0.1                                                                       |
| Aldrin                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                       | 0.5                                   | <0.5                                         | <0.5                                                 | <0.5                                                 | <0.5                                                                       |
| alpha-BHC                                                                                                                                                                                                                                                                                                                                                                            | mg/kg<br>mg/kg                                                                                                                                                          | 0.5                                   | <0.5                                         | <0.5                                                 | <0.5                                                 | <0.5                                                                       |
| alpha-Chlordane                                                                                                                                                                                                                                                                                                                                                                      | mg/kg                                                                                                                                                                   | 0.5                                   | <0.5                                         | <0.5                                                 | <0.5                                                 | <0.5                                                                       |
| gamma-Chlordane                                                                                                                                                                                                                                                                                                                                                                      | mg/kg                                                                                                                                                                   | 0.5                                   | <0.5                                         | <0.5                                                 | <0.5                                                 | <0.5                                                                       |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                                                                                                                                                   | 0.5                                   | <0.1                                         | <0.1                                                 | <0.1                                                 | <0.5                                                                       |
| Arochlor 1016                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                                                                                                                                                   | 1                                     | <1.0                                         | <1.0                                                 | <1.0                                                 | <1.0                                                                       |
| Arochlor 1221                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                                                                                                                                                   | 1                                     | <1.0                                         | <1.0                                                 | <1.0                                                 | <1.0                                                                       |
| Arochlor 1232                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                                                                                                                                                   | 1                                     | <1.0                                         | <1.0                                                 | <1.0                                                 | <1.0                                                                       |
| Arochlor 1242                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                                                                                                                                                   | 1                                     | <1.0                                         | <1.0                                                 | <1.0                                                 | <1.0                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                      | 9,9                                                                                                                                                                     |                                       |                                              |                                                      |                                                      |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                      | ma/ka                                                                                                                                                                   | 1 1                                   |                                              | <10                                                  | <10                                                  | <1.0                                                                       |
| Arochlor 1248                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                                                                                                                                                   | 1                                     | <1.0                                         | <1.0                                                 | <1.0                                                 | <1.0<br><1.0                                                               |
| Arochlor 1248<br>Arochlor 1254                                                                                                                                                                                                                                                                                                                                                       | mg/kg                                                                                                                                                                   | 1                                     | <1.0                                         | <1.0                                                 | <1.0                                                 | <1.0                                                                       |
| Arochlor 1248<br>Arochlor 1254<br>Arochlor 1260                                                                                                                                                                                                                                                                                                                                      | mg/kg<br>mg/kg                                                                                                                                                          | 1 1                                   | <1.0<br><1.0                                 | <1.0<br><1.0                                         | <1.0<br><1.0                                         | <1.0<br><1.0                                                               |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262                                                                                                                                                                                                                                                                                                                              | mg/kg<br>mg/kg<br>mg/kg                                                                                                                                                 | 1 1 1                                 | <1.0<br><1.0<br><1.0                         | <1.0<br><1.0<br><1.0                                 | <1.0<br><1.0<br><1.0                                 | <1.0<br><1.0<br><1.0                                                       |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268                                                                                                                                                                                                                                                                                                                | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                                                                                                        | 1 1 1 1 1                             | <1.0<br><1.0<br><1.0<br><1.0                 | <1.0<br><1.0<br><1.0<br><1.0                         | <1.0<br><1.0<br><1.0<br><1.0                         | <1.0<br><1.0<br><1.0<br><1.0                                               |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo(a)anthracene                                                                                                                                                                                                                                                                                             | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                                                                                                        | 1<br>1<br>1<br>1<br>0.1               | <1.0<br><1.0<br><1.0<br><1.0<br><1.0         | <1.0<br><1.0<br><1.0<br><1.0<br><0.1                 | <1.0<br><1.0<br><1.0<br><1.0<br><0.1                 | <1.0<br><1.0<br><1.0<br><1.0<br><0.1                                       |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo(a)anthracene Benzo (a) pyrene                                                                                                                                                                                                                                                                            | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                                                                                                                                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0<br><1.0<br><1.0<br><1.0<br><1.0<br><0.1 | <1.0<br><1.0<br><1.0<br><1.0<br><0.1                 | <1.0<br><1.0<br><1.0<br><1.0<br><0.1                 | <1.0<br><1.0<br><1.0<br><1.0<br><1.0<br><0.1                               |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo(a)anthracene Benzo (a) pyrene Benzo (b+j) fluoranthene                                                                                                                                                                                                                                                   | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                                                                                                                               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1      | <1.0<br><1.0<br><1.0<br><1.0<br><0.1<br><0.1<br><0.1 | <1.0<br><1.0<br><1.0<br><1.0<br><1.0<br><0.1<br><0.1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1                                    |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo (a) anthracene Benzo (b+j) fluoranthene Benzo (ghi) perylene                                                                                                                                                                                                                                             | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                                                                                                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0<br><1.0<br><1.0<br><1.0<br><1.0<br><0.1 | <1.0<br><1.0<br><1.0<br><1.0<br><0.1                 | <1.0<br><1.0<br><1.0<br><1.0<br><0.1                 | <1.0<br><1.0<br><1.0<br><1.0<br><1.0<br><0.1                               |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo (a) anthracene Benzo (b+j) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene                                                                                                                                                                                                                      | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                                                                                                                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1      | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1                                    |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo (a) anthracene Benzo (b+j) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene beta-BHC                                                                                                                                                                                                             | mg/kg                                                                                                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1      | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1                                    |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo (a) anthracene Benzo (b+j) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene beta-BHC Chlorpyrifos                                                                                                                                                                                                | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                                                                                                                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1      | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1                                    |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo(a)anthracene Benzo (a) pyrene Benzo (b+j) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene beta-BHC Chlorpyrifos delta-BHC                                                                                                                                                                       | mg/kg                                                                                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1      | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1                                    |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo(a)anthracene Benzo (a) pyrene Benzo (b+j) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene beta-BHC Chlorpyrifos delta-BHC Dibenz (ah) anthracene                                                                                                                                                | mg/kg                                                                                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1      | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1                                    |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo(a)anthracene Benzo (a) pyrene Benzo (b+j) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene beta-BHC Chlorpyrifos delta-BHC Dibenz (ah) anthracene                                                                                                                                                | mg/kg                                                                                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1      | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1                                    |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo(a)anthracene Benzo (a) pyrene Benzo (b+j) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene beta-BHC Chlorpyrifos delita-BHC Dibenz (ah) anthracene                                                                                                                                               | mg/kg                                                                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1      | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1                                    |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo(a)anthracene Benzo (a) pyrene Benzo (b+j) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene beta-BHC Chlorpyrifos delta-BHC Dibenz (ah) anthracene Dieldrin Dimethoate Endosulfan 1                                                                                                               | mg/kg                                                             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1      | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1                                    |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo (a) pyrene Benzo (b+j) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene beta-BHC Chlorpyrifos delta-BHC Dibenz (ah) anthracene Dieldrin Dimethoate Endosulfan 1 Endosulfan 2                                                                                                                     | mg/kg                                                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1      | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1                                    |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo (a) anthracene Benzo (b+j) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene beta-BHC Chlorpyrifos delta-BHC Dibenz (ah) anthracene Dieldrin Dimethoate Endosulfan 1 Endosulfan 2 Endosulfan Sulphate                                                                                             | mg/kg                                     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1      | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <pre>&lt;1.0 &lt;1.0 &lt;1.0 &lt;1.0 &lt;1.0 &lt;0.1 &lt;0.1 &lt;0.1</pre> |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo (a) anthracene Benzo (b+j) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene beta-BHC Chlorpyrifos delta-BHC Dibenz (ah) anthracene Dieldrin Dimethoate Endosulfan 1 Endosulfan 2 Endosulfan Sulphate Endrin                                                                                      | mg/kg                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0      | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1                                    |
| Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo (a) anthracene Benzo (b+j) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene Benzo (k) fluoranthene Dieta-BHC Chlorpyrifos delta-BHC Dibenz (ah) anthracene Dieldrin Dimethoate Endosulfan 1 Endosulfan 2 Endosulfan Sulphate Endrin Endrin Aldehyde Famphur | mg/kg             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0      | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1                                    |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo (a) anthracene Benzo (b+j) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene beta-BHC Chlorpyrifos delta-BHC Dibenz (ah) anthracene Dieldrin Dimethoate Endosulfan 1 Endosulfan Sulphate Endrin Endrin Aldehyde                                                                                   | mg/kg | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0      | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1                                    |
| Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268 Benzo (a) pyrene Benzo (b+j) fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene beta-BHC Chlorpyrifos delta-BHC Dibenz (ah) anthracene Dieldrin Dimethoate Endosulfan 1 Endosulfan Sulphate Endrin Endrin Aldehyde Famphur                                                                               | mg/kg | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0      | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1 <0.1              | <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <0.1 <0.1                                    |

28-November-2024 Page 7 of 19

0.5

<0.5

<0.5



ME368667 R0

|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | Soil<br>20 Nov 2024                                               | ME368667.006<br>Soil<br>20 Nov 2024<br>S6                        | ME368667.007<br>Soil<br>20 Nov 2024<br>S7                      | ME368667.008<br>Soil<br>20 Nov 2024<br>S8                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|
| Parameter 8270D.SL.01 SVOCs All in Solids/Soils Method: MA 8                                                                                                                                                                                                | Units<br>270 Tested: 25/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOR<br>/2024 (con                                            | tinued)                                                           |                                                                  |                                                                |                                                                   |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | `                                                            |                                                                   | 2.5                                                              | 0.5                                                            |                                                                   |
| Heptachlor Epoxide                                                                                                                                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                          | <0.5                                                              | <0.5                                                             | <0.5                                                           | <0.5                                                              |
| Indeno (1,2,3-cd) pyrene                                                                                                                                                                                                                                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1                                                          | <0.1                                                              | <0.1                                                             | <0.1                                                           | <0.1                                                              |
| Isodrin                                                                                                                                                                                                                                                     | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                          | <0.5                                                              | <0.5                                                             | <0.5                                                           | <0.5                                                              |
| Methoxychlor Methox organization                                                                                                                                                                                                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                          | <0.5                                                              | <0.5                                                             | <0.5                                                           | <0.5                                                              |
| Methyl parathion Naphthalene                                                                                                                                                                                                                                | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                          | <0.5                                                              | <0.5                                                             | <0.5                                                           | <0.5                                                              |
| <u> </u>                                                                                                                                                                                                                                                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1                                                          | <0.1                                                              | <0.1<br><0.5                                                     | <0.1<br><0.5                                                   | <0.1                                                              |
| O,O,O-Triethylphosphorothioate                                                                                                                                                                                                                              | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                                   |                                                                  |                                                                |                                                                   |
| Phenanthrene Phorate                                                                                                                                                                                                                                        | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                          | <0.5<br><0.5                                                      | <0.5<br><0.5                                                     | <0.5<br><0.5                                                   | <0.5<br><0.5                                                      |
| Pyrene                                                                                                                                                                                                                                                      | mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5                                                          | <0.5                                                              | <0.5                                                             | <0.5                                                           | <0.5                                                              |
| Stirofos                                                                                                                                                                                                                                                    | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                          | <0.5                                                              | <0.5                                                             | <0.5                                                           | <0.5                                                              |
| Sulfotepp                                                                                                                                                                                                                                                   | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                          | <0.5                                                              | <0.5                                                             | <0.5                                                           | <0.5                                                              |
| Thionazin                                                                                                                                                                                                                                                   | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                          | <0.5                                                              | <0.5                                                             | <0.5                                                           | <0.5                                                              |
| Total OC Pesticides                                                                                                                                                                                                                                         | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                            | <1.0                                                              | <1.0                                                             | <1.0                                                           | <1.0                                                              |
| Total PCBs                                                                                                                                                                                                                                                  | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                            | <1.0                                                              | <1.0                                                             | <1.0                                                           | <1.0                                                              |
| 2,4,6-Tribromophenol (surrogate)                                                                                                                                                                                                                            | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | 51                                                                | 57                                                               | 53                                                             | 55                                                                |
| Fluorobiphenyl (surrogate)                                                                                                                                                                                                                                  | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                            | 85                                                                | 84                                                               | 83                                                             | 82                                                                |
|                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                                   |                                                                  |                                                                |                                                                   |
| Fluoronnenol (surrogate)                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 156                                                               | 136                                                              | 143                                                            | 131                                                               |
| Fluorophenol (surrogate)  Nitrohenzene-D5 (surrogate)                                                                                                                                                                                                       | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                            | 156                                                               | 136<br>88                                                        | 143                                                            | 131                                                               |
| Nitrobenzene-D5 (surrogate)                                                                                                                                                                                                                                 | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              | 92                                                                | 88                                                               | 91                                                             | 91                                                                |
| Nitrobenzene-D5 (surrogate)<br>p-Terphenyl-D14 (surrogate)                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                            |                                                                   |                                                                  |                                                                |                                                                   |
| Nitrobenzene-D5 (surrogate) p-Terphenyl-D14 (surrogate) Phenol-D6 (surrogate)  Metals/Elements in Solids Method: MA1400_1 Test                                                                                                                              | %<br>%<br>%<br>ted: 25/11/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | 92<br>77<br>94                                                    | 88<br>80<br>90                                                   | 91<br>77<br>92                                                 | 91<br>77<br>90                                                    |
| Nitrobenzene-D5 (surrogate) p-Terphenyl-D14 (surrogate) Phenol-D6 (surrogate)  Metals/Elements in Solids Method: MA1400_1 Test Arsenic                                                                                                                      | %<br>%<br>%<br>ted: 25/11/2024<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              | 92<br>77<br>94                                                    | 88<br>80<br>90                                                   | 91<br>77<br>92<br>7                                            | 91<br>77<br>90                                                    |
| Nitrobenzene-D5 (surrogate) p-Terphenyl-D14 (surrogate) Phenol-D6 (surrogate)  Metals/Elements in Solids Method: MA1400_1 Test  Arsenic Cadmium                                                                                                             | %<br>%<br>%<br>ted: 25/11/2024<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 0.2                                                        | 92<br>77<br>94<br>3<br><0.2                                       | 88<br>80<br>90<br>5<br><0.2                                      | 91<br>77<br>92<br>7<br><0.2                                    | 91<br>77<br>90<br>7<br><0.2                                       |
| Nitrobenzene-D5 (surrogate) p-Terphenyl-D14 (surrogate) Phenol-D6 (surrogate)  Metals/Elements in Solids Method: MA1400_1 Test  Arsenic Cadmium Chromium                                                                                                    | % % % ted: 25/11/2024  mg/kg mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>0.2<br>2                                                | 92<br>77<br>94<br>3<br><0.2                                       | 88<br>80<br>90<br>5<br><0.2                                      | 91<br>77<br>92<br>7<br><0.2<br>9                               | 91<br>77<br>90<br>7<br><0.2<br>22                                 |
| Nitrobenzene-D5 (surrogate) p-Terphenyl-D14 (surrogate) Phenol-D6 (surrogate)  Metals/Elements in Solids Method: MA1400_1 Test  Arsenic Cadmium Chromium Copper                                                                                             | % % % ted: 25/11/2024  mg/kg mg/kg mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2<br>0.2<br>2                                                | 92<br>77<br>94<br>3<br><0.2<br>17                                 | 88<br>80<br>90<br>5<br><0.2<br>16<br>31                          | 91<br>77<br>92<br>7<br><0.2<br>9                               | 91<br>77<br>90<br>7<br><0.2<br>22<br>14                           |
| Nitrobenzene-D5 (surrogate) p-Terphenyl-D14 (surrogate) Phenol-D6 (surrogate)  Metals/Elements in Solids Method: MA1400_1 Test Arsenic Cadmium Chromium Copper Lead                                                                                         | % % % ted: 25/11/2024  mg/kg mg/kg mg/kg mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<br>0.2<br>2<br>2<br>2                                      | 92<br>77<br>94<br>3<br><0.2<br>17<br>9                            | 88<br>80<br>90<br>5<br><0.2<br>16<br>31<br>25                    | 91<br>77<br>92<br>7<br><0.2<br>9<br>8<br>15                    | 91<br>77<br>90<br>7<br><0.2<br>22<br>14<br>18                     |
| Nitrobenzene-D5 (surrogate) p-Terphenyl-D14 (surrogate) Phenol-D6 (surrogate)  Metals/Elements in Solids Method: MA1400_1 Test Arsenic Cadmium Chromium Copper Lead Mercury                                                                                 | % % % ted: 25/11/2024  mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>0.2<br>2<br>2<br>2<br>2<br>2<br>0.05                    | 92<br>77<br>94<br>3<br><0.2<br>17<br>9<br>10<br><0.05             | 5<br><0.2<br>16<br>31<br>25<br>0.06                              | 91<br>77<br>92<br>7<br><0.2<br>9<br>8<br>15<br>0.06            | 91<br>77<br>90<br>7<br><0.2<br>22<br>14<br>18<br><0.05            |
| Nitrobenzene-D5 (surrogate) p-Terphenyl-D14 (surrogate) Phenol-D6 (surrogate)  Metals/Elements in Solids Method: MA1400_1 Test  Arsenic Cadmium Chromium Copper Lead Mercury Nickel                                                                         | % % % % ted: 25/11/2024  mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>0.2<br>2<br>2<br>2<br>2<br>2<br>0.05                    | 92<br>77<br>94<br>3<br><0.2<br>17<br>9<br>10<br><0.05             | 88<br>80<br>90<br>5<br><0.2<br>16<br>31<br>25<br>0.06            | 91<br>77<br>92<br>7<br><0.2<br>9<br>8<br>15<br>0.06            | 91<br>77<br>90<br>7<br><0.2<br>22<br>14<br>18<br><0.05            |
| Nitrobenzene-D5 (surrogate) p-Terphenyl-D14 (surrogate) Phenol-D6 (surrogate)  Metals/Elements in Solids Method: MA1400_1 Test Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc  Fibre Identification in soil Method: AS4964/AN602                  | % % % ted: 25/11/2024  mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Tested: 26/11/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>0.2<br>2<br>2<br>2<br>2<br>2<br>0.05                    | 92<br>77<br>94<br>3<br><0.2<br>17<br>9<br>10<br><0.05<br>18<br>28 | 5<br><0.2<br>16<br>31<br>25<br>0.06<br>4                         | 91<br>77<br>92<br>7<br><0.2<br>9<br>8<br>15<br>0.06<br>4       | 91<br>77<br>90<br>7<br><0.2<br>22<br>14<br>18<br><0.05<br>7       |
| Nitrobenzene-D5 (surrogate) p-Terphenyl-D14 (surrogate) Phenol-D6 (surrogate)  Metals/Elements in Solids Method: MA1400_1 Test  Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc  Fibre Identification in soil Method: AS4964/AN602  Date Analysed* | % % % ted: 25/11/2024  mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2<br>0.2<br>2<br>2<br>2<br>2<br>2<br>0.05                    | 92<br>77<br>94<br>3<br><0.2<br>17<br>9<br>10<br><0.05             | 88<br>80<br>90<br>5<br><0.2<br>16<br>31<br>25<br>0.06            | 91<br>77<br>92<br>7<br><0.2<br>9<br>8<br>15<br>0.06            | 91<br>77<br>90<br>7<br><0.2<br>22<br>14<br>18<br><0.05            |
| Nitrobenzene-D5 (surrogate) p-Terphenyl-D14 (surrogate) Phenol-D6 (surrogate)  Metals/Elements in Solids Method: MA1400_1 Test  Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc                                                                    | % % % ted: 25/11/2024  mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Tested: 26/11/2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>0.2<br>2<br>2<br>2<br>2<br>2<br>0.05                    | 92<br>77<br>94<br>3<br><0.2<br>17<br>9<br>10<br><0.05<br>18<br>28 | 5<br><0.2<br>16<br>31<br>25<br>0.06<br>4                         | 91<br>77<br>92<br>7<br><0.2<br>9<br>8<br>15<br>0.06<br>4       | 91<br>77<br>90<br>7<br><0.2<br>22<br>14<br>18<br><0.05<br>7       |
| Nitrobenzene-D5 (surrogate) p-Terphenyl-D14 (surrogate) Phenol-D6 (surrogate)  Metals/Elements in Solids Method: MA1400_1 Test Arsenic Cadmium Chromium Copper Lead Mercury Nickel Zinc  Fibre Identification in soil Method: AS4964/AN602  Date Analysed*  | % % % % ted: 25/11/2024  mg/kg | 2<br>0.2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2        | 92<br>77<br>94<br>3<br><0.2<br>17<br>9<br>10<br><0.05<br>18<br>28 | 88<br>80<br>90<br>5<br><0.2<br>16<br>31<br>25<br>0.06<br>4<br>45 | 91<br>77<br>92<br>7<br><0.2<br>9<br>8<br>15<br>0.06<br>4<br>30 | 91<br>77<br>90<br>7<br><0.2<br>22<br>14<br>18<br><0.05<br>7<br>40 |

28-November-2024 Page 8 of 19



ME368667 R0

|                                                  |                | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | ME368667.005<br>Soil<br>20 Nov 2024<br>S5 | ME368667.006<br>Soil<br>20 Nov 2024<br>S6 | ME368667.007<br>Soil<br>20 Nov 2024<br>S7 | ME368667.008<br>Soil<br>20 Nov 2024<br>S8 |
|--------------------------------------------------|----------------|--------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Parameter                                        | Units          | LOR                                                          |                                           |                                           |                                           |                                           |
| Combined SVOC Pesticides in Solids/Soils Method: | MA 8270 Tested | : 27/11/2024                                                 |                                           |                                           |                                           |                                           |
| Dichlorvos                                       | mg/kg          | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Diazinon*                                        | mg/kg          | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Fenitrothion                                     | mg/kg          | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Malathion                                        | mg/kg          | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Parathion                                        | mg/kg          | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Bromophos ethyl*                                 | mg/kg          | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Methidathion                                     | mg/kg          | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Ethion                                           | mg/kg          | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Azinphos-methyl                                  | mg/kg          | 0.5                                                          | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |
| Surrogates                                       |                |                                                              |                                           | -                                         | 1                                         |                                           |
| d14-p-terphenyl (Surrogate)                      | %              | -                                                            | 104                                       | 98                                        | 99                                        | 99                                        |

28-November-2024 Page 9 of 19



# ME368667 R0

|                                                     |                 | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | Soil<br>20 Nov 2024 | ME368667.010<br>Soil<br>20 Nov 2024<br>Duplicate |
|-----------------------------------------------------|-----------------|--------------------------------------------------------------|---------------------|--------------------------------------------------|
| Parameter                                           | Units           | LOR                                                          |                     |                                                  |
| Moisture Content Method: AN002 Tested: 21/11/202    | 24              |                                                              |                     |                                                  |
| % Moisture                                          | %w/w            | 1                                                            | 16.5                | 9.6                                              |
| USEPA 8260B Volatile Organic Compounds in Solids/So | oils Method: US | EPA 8260 B                                                   | Tested: 21/11/2024  | 4                                                |
| m&p-Xylenes                                         | mg/kg           | 0.1                                                          | <0.1                | <0.1                                             |
| Total BTEX                                          | mg/kg           | 0.5                                                          | <0.5                | <0.5                                             |
| Monocyclic Aromatic Hydrocarbons                    |                 |                                                              |                     |                                                  |
| Benzene                                             | mg/kg           | 0.1                                                          | <0.1                | <0.1                                             |
| Toluene                                             | mg/kg           | 0.1                                                          | <0.1                | <0.1                                             |
| Ethylbenzene                                        | mg/kg           | 0.1                                                          | <0.1                | <0.1                                             |
| o-Xylenes                                           | mg/kg           | 0.1                                                          | <0.1                | <0.1                                             |
| Polycyclic Aromatic Hydrocarbons                    |                 |                                                              |                     |                                                  |
| Naphthalene (VOC)                                   | mg/kg           | 0.1                                                          | <0.1                | <0.1                                             |
| Surrogates                                          |                 |                                                              |                     |                                                  |
| Toluene-d8 (surrogate)                              | %               | -                                                            | 76                  | 76                                               |
| Volatile Petroleum Hydrocarbons in soil Method: MA3 | 30-VPH Tested:  | 21/11/2024                                                   |                     |                                                  |
| TRH C6-C9 (P&T)                                     | mg/kg           | 10                                                           | <10                 | <10                                              |
| TRH C6-C10 (P&T)                                    | mg/kg           | 10                                                           | <10                 | <10                                              |
| TRH C6-C10 (P&T) less BTEX (F1)                     | mg/kg           | 10                                                           | <10                 | <10                                              |

28-November-2024 Page 10 of 19





|                 | Sample Number | ME368667.009 | ME368667.010 |
|-----------------|---------------|--------------|--------------|
|                 | Sample Matrix | Soil         | Soil         |
|                 | Sample Date   | 20 Nov 2024  | 20 Nov 2024  |
|                 | Sample Name   | S9           | Duplicate    |
| Parameter Units | LOR           |              |              |

#### TRH in soil MA-30.SL.01 Method: MA30 Tested: 21/11/2024

| TRH C6-C9 (P&T)                   | mg/kg | 10 | <10 | <10 |
|-----------------------------------|-------|----|-----|-----|
| TRH C10-C14                       | mg/kg | 10 | <10 | <10 |
| TRH >C10-C16                      | mg/kg | 10 | <10 | <10 |
| TRH>C10-C16 less naphthalene (F2) | mg/kg | 10 | <10 | <10 |
| TRH >C16-C34 (F3)                 | mg/kg | 20 | 94  | 43  |
| TRH C15-C28                       | mg/kg | 20 | 51  | 25  |
| TRH C29-C36                       | mg/kg | 20 | 50  | 26  |
| C6-C10 (P&T) less BTEX (F1)       | mg/kg | 10 | <10 | <10 |
| Total TRH C10-C36                 | mg/kg | 20 | 100 | 50  |
| TRH >C34-C40 (F4)                 | mg/kg | 20 | <20 | <20 |
| TRH C6-C10 (P&T)                  | mg/kg | 10 | <10 | <10 |
| Total TRH C6-C36                  | mg/kg | 20 | 100 | 50  |
| Total TRH C6-C40 (F)              | mg/kg | 20 | 94  | 43  |
| TRH >C10-C40 (F)                  | mg/kg | 20 | 94  | 43  |
|                                   |       |    |     |     |

#### 8270D.SL.01 SVOCs All in Solids/Soils Method: MA 8270 Tested: 21/11/2024

| 1-Methylnaphthalene      | mg/kg | 0.1 | <0.1 | <0.1 |
|--------------------------|-------|-----|------|------|
| 2-Methylnaphthalene      | mg/kg | 0.1 | <0.1 | <0.1 |
| 4,4-DDD                  | mg/kg | 0.5 | <0.5 | <0.5 |
| 4,4-DDE                  | mg/kg | 0.5 | <0.5 | <0.5 |
| 4,4-DDT                  | mg/kg | 0.5 | <0.5 | <0.5 |
| Acenaphthene             | mg/kg | 0.1 | <0.1 | <0.1 |
| Acenaphthylene           | mg/kg | 0.1 | <0.1 | <0.1 |
| Aldrin                   | mg/kg | 0.5 | <0.5 | <0.5 |
| alpha-BHC                | mg/kg | 0.5 | <0.5 | <0.5 |
| alpha-Chlordane          | mg/kg | 0.5 | <0.5 | <0.5 |
| gamma-Chlordane          | mg/kg | 0.5 | <0.5 | <0.5 |
| Anthracene               | mg/kg | 0.1 | <0.1 | <0.1 |
| Arochlor 1016            | mg/kg | 1   | <1.0 | <1.0 |
| Arochlor 1221            | mg/kg | 1   | <1.0 | <1.0 |
| Arochlor 1232            | mg/kg | 1   | <1.0 | <1.0 |
| Arochlor 1242            | mg/kg | 1   | <1.0 | <1.0 |
| Arochlor 1248            | mg/kg | 1   | <1.0 | <1.0 |
| Arochlor 1254            | mg/kg | 1   | <1.0 | <1.0 |
| Arochlor 1260            | mg/kg | 1   | <1.0 | <1.0 |
| Arochlor 1262            | mg/kg | 1   | <1.0 | <1.0 |
| Arochlor 1268            | mg/kg | 1   | <1.0 | <1.0 |
| Benzo(a)anthracene       | mg/kg | 0.1 | <0.1 | <0.1 |
| Benzo (a) pyrene         | mg/kg | 0.1 | <0.1 | <0.1 |
| Benzo (b+j) fluoranthene | mg/kg | 0.1 | <0.1 | <0.1 |
| Benzo (ghi) perylene     | mg/kg | 0.1 | <0.1 | <0.1 |
| Benzo (k) fluoranthene   | mg/kg | 0.1 | <0.1 | <0.1 |
| beta-BHC                 | mg/kg | 0.5 | <0.5 | <0.5 |
| Chlorpyrifos             | mg/kg | 0.5 | <0.5 | <0.5 |
| delta-BHC                | mg/kg | 0.5 | <0.5 | <0.5 |
| Dibenz (ah) anthracene   | mg/kg | 0.1 | <0.1 | <0.1 |
| Dieldrin                 | mg/kg | 0.5 | <0.5 | <0.5 |
| Dimethoate               | mg/kg | 0.5 | <0.5 | <0.5 |
| Endosulfan 1             | mg/kg | 0.5 | <0.5 | <0.5 |
| Endosulfan 2             | mg/kg | 0.5 | <0.5 | <0.5 |
| Endosulfan Sulphate      | mg/kg | 0.5 | <0.5 | <0.5 |
| Endrin                   | mg/kg | 0.5 | <0.5 | <0.5 |
| Endrin Aldehyde          | mg/kg | 0.5 | <0.5 | <0.5 |
| Famphur                  | mg/kg | 0.5 | <0.5 | <0.5 |
| Fluoranthene             | mg/kg | 0.1 | <0.1 | <0.1 |
| Fluorene                 | mg/kg | 0.1 | <0.1 | <0.1 |
| gamma-BHC                | mg/kg | 0.5 | <0.5 | <0.5 |
| Heptachlor               | mg/kg | 0.5 | <0.5 | <0.5 |

28-November-2024 Page 11 of 19



ME368667 R0

|                 | Sample Number | ME368667.009 | ME368667.010 |
|-----------------|---------------|--------------|--------------|
|                 | Sample Matrix | Soil         | Soil         |
|                 | Sample Date   | 20 Nov 2024  | 20 Nov 2024  |
|                 | Sample Name   | S9           | Duplicate    |
| Parameter Units | LOR           |              |              |

#### 8270D.SL.01 SVOCs All in Solids/Soils Method: MA 8270 Tested: 25/11/2024 (continued)

| Heptachlor Epoxide               | mg/kg | 0.5 | <0.5 | <0.5 |
|----------------------------------|-------|-----|------|------|
| Indeno (1,2,3-cd) pyrene         | mg/kg | 0.1 | <0.1 | <0.1 |
| Isodrin                          | mg/kg | 0.5 | <0.5 | <0.5 |
| Methoxychlor                     | mg/kg | 0.5 | <0.5 | <0.5 |
| Methyl parathion                 | mg/kg | 0.5 | <0.5 | <0.5 |
| Naphthalene                      | mg/kg | 0.1 | <0.1 | <0.1 |
| O,O,O-Triethylphosphorothioate   | mg/kg | 0.5 | <0.5 | <0.5 |
| Phenanthrene                     | mg/kg | 0.5 | <0.5 | <0.5 |
| Phorate                          | mg/kg | 0.5 | <0.5 | <0.5 |
| Pyrene                           | mg/kg | 0.5 | <0.5 | <0.5 |
| Stirofos                         | mg/kg | 0.5 | <0.5 | <0.5 |
| Sulfotepp                        | mg/kg | 0.5 | <0.5 | <0.5 |
| Thionazin                        | mg/kg | 0.5 | <0.5 | <0.5 |
| Total OC Pesticides              | mg/kg | 1   | <1.0 | <1.0 |
| Total PCBs                       | mg/kg | 1   | <1.0 | <1.0 |
| 2,4,6-Tribromophenol (surrogate) | %     | -   | 55   | 53   |
| Fluorobiphenyl (surrogate)       | %     | -   | 82   | 83   |
| Fluorophenol (surrogate)         | %     | -   | 139  | 141  |
| Nitrobenzene-D5 (surrogate)      | %     | -   | 86   | 91   |
| p-Terphenyl-D14 (surrogate)      | %     | -   | 77   | 78   |
| Phenol-D6 (surrogate)            | %     | -   | 89   | 95   |

#### Metals/Elements in Solids Method: MA1400\_1 Tested: 25/11/2024

| Arsenic  | mg/kg                               | 2                      | 15                | 5     |                   |  |
|----------|-------------------------------------|------------------------|-------------------|-------|-------------------|--|
| Cadmium  | mg/kg                               | 0.2                    | <0.2              | <0.2  |                   |  |
| Chromium | mg/kg 2 <b>20</b> mg/kg 2 <b>33</b> |                        | 14                |       |                   |  |
| Copper   |                                     |                        | mg/kg 2 <b>33</b> |       | mg/kg 2 <b>33</b> |  |
| Lead     | mg/kg 2 <b>24</b>                   |                        | 15                |       |                   |  |
| Mercury  | mg/kg                               | mg/kg 0.05 <b>0.09</b> |                   | <0.05 |                   |  |
| Nickel   | mg/kg 2 <b>7</b>                    |                        | 8                 |       |                   |  |
| Zinc     | mg/kg                               | 2                      | 30                | 17    |                   |  |

28-November-2024 Page 12 of 19



ME368667 R0

|                                                   |                   | Sample Number<br>Sample Matrix<br>Sample Date<br>Sample Name | ME368667.009<br>Soil<br>20 Nov 2024<br>S9 | ME368667.010<br>Soil<br>20 Nov 2024<br>Duplicate |
|---------------------------------------------------|-------------------|--------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|
| Parameter                                         | Units             | LOR                                                          |                                           |                                                  |
| Fibre Identification in soil Method: AS4964/AN602 | Tested: 26/11/202 | 24                                                           |                                           |                                                  |
| Date Analysed*                                    | No unit           | -                                                            | 25/11/2024 00:00                          | 25/11/2024 00:00                                 |
| FibreID                                           |                   |                                                              |                                           |                                                  |
| Asbestos Detected                                 | No unit           | -                                                            | No                                        | No                                               |
| SemiQuant                                         |                   |                                                              |                                           |                                                  |
| Estimated Fibres*                                 | %w/w              | 0.01                                                         | <0.01                                     | <0.01                                            |
| Combined SVOC Pesticides in Solids/Soils Method:  |                   | d: 27/11/2024                                                | <0.5                                      | <0.5                                             |
| Diazinon*                                         | mg/kg             | 0.5                                                          | <0.5                                      | <0.5                                             |
| Fenitrothion                                      | mg/kg<br>mg/kg    | 0.5                                                          | <0.5                                      | <0.5                                             |
| Malathion                                         | mg/kg             | 0.5                                                          | <0.5                                      | <0.5                                             |
| Parathion                                         | mg/kg             | 0.5                                                          | <0.5                                      | <0.5                                             |
| Bromophos ethyl*                                  | mg/kg             | 0.5                                                          | <0.5                                      | <0.5                                             |
| Methidathion                                      | mg/kg             | 0.5                                                          | <0.5                                      | <0.5                                             |
| Ethion                                            | mg/kg             | 0.5                                                          | <0.5                                      | <0.5                                             |
| Azinphos-methyl                                   | mg/kg             | 0.5                                                          | <0.5                                      | <0.5                                             |
| Surrogates                                        | 1                 | 1                                                            |                                           |                                                  |
| d14-p-terphenyl (Surrogate)                       | %                 | -                                                            | 96                                        | 101                                              |
|                                                   |                   |                                                              |                                           |                                                  |

28-November-2024 Page 13 of 19



# **QC SUMMARY**

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.


DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

#### 8270D.SL.01 SVOCs All in Solids/Soils Method: MA 8270

| Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Parameter Method: MA 8270        | QC       | Units | LOR | MB   | DUP %RPD | LCS  | MS    | MSD %RPD |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------|-------|-----|------|----------|------|-------|----------|
| Mathematical   Math |                                  |          | _     |     |      |          |      |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |          |       |     |      |          |      |       |          |
| A-4-007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |          |       |     |      |          |      | NA NA | NA       |
| Materian   Materian  |                                  |          |       |     |      |          |      |       |          |
| Descriptimen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |          |       |     |      |          |      |       |          |
| Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |          |       |     |      |          |      |       |          |
| March   Marc |                                  |          |       |     |      |          |      |       |          |
| Agent   Agen |                                  |          | mg/kg |     |      |          |      | NA    | NA       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aldrin                           | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | 91%  |       |          |
| Quantical Childrate   Control Childrate   Co | alpha-BHC                        |          | mg/kg |     |      |          |      |       |          |
| Autonome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | alpha-Chlordane                  | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | NA   |       |          |
| Acceler 1018   L8002869   Implies   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gamma-Chlordane                  | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | NA   |       |          |
| Accolor 1272   Accolor 1272   L803/2096   mg/lag   11   41   0   0%   NA   Accolor 1272   L803/2096   mg/lag   11   41   0   0%   NA   Accolor 1272   NA   Accolor   | Anthracene                       | LB082866 | mg/kg | 0.1 | <0.1 | 0%       | NA   | NA    | NA       |
| Ancelor 1232   Ancelor 1232   Ancelor 1242   Ancelor 1243   Ancelor 1244   Ancelor 1244   Ancelor 1246   Anc  | Arochlor 1016                    | LB082866 | mg/kg | 1   | <1.0 | 0%       | NA   |       |          |
| Arcelor 1242         LB062886         mg/kg         1         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arochlor 1221                    | LB082866 | mg/kg | 1   | <1.0 | 0%       | NA   |       |          |
| Accolor 1248   L8062866   mg/hg   1   410   0%   NA   Accolor 1246   Accolor 1246   1.0062866   mg/hg   1   410   0%   NA   Accolor 1260   1.0062866   mg/hg   1   410   0%   NA   Accolor 1262   Accolor 1262   1.0062866   mg/hg   1   410   0%   NA   Accolor 1268   Accolor 1262   1.0062866   mg/hg   1   410   0%   NA   Accolor 1268   Mg/hg   1   410   0%   NA   Accolor 1268   Mg/hg   1   410   0%   NA   Accolor 1268   Mg/hg   1   410   0%   NA   Accolor 1269   Mg/hg   1   410   0%   NA   Accolor 1269   Mg/hg   1   410   0%   NA   NA   NA   NA   Accolor 1269   Mg/hg   1   401   0%   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arochlor 1232                    | LB082866 | mg/kg | 1   | <1.0 | 0%       | NA   |       |          |
| Annelfor 1984         I B0100866         mg/hg         1         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Arochlor 1242                    | LB082866 | mg/kg | 1   | <1.0 | 0%       | NA   |       |          |
| Autochier 1200   L.Boszade   mg/kg   1   < 1.0   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%   0.0%    | Arochlor 1248                    | LB082866 | mg/kg | 1   | <1.0 | 0%       | NA   |       |          |
| Arcelor 1282   18882888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arochlor 1254                    | LB082866 | mg/kg | 1   | <1.0 | 0%       | NA   |       |          |
| According 1288   1988   1988   1   10   10   0   0   0   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arochlor 1260                    | LB082866 | mg/kg | 1   | <1.0 | 0%       | NA   |       |          |
| Benzo(a)) greene   LB082868   mg/kg   0.1   4.0.1   0%   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arochlor 1262                    | LB082866 | mg/kg | 1   | <1.0 | 0%       | NA   |       |          |
| Benzo (a) pyrene         LB082286   mg/kg   0.1   √0.1   √0.1   0%   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arochlor 1268                    | LB082866 | mg/kg | 1   | <1.0 | 0%       | NA   |       |          |
| Benzo (byl) fluoramhena         LB082886 mg/kg         0.1         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benzo(a)anthracene               | LB082866 | mg/kg | 0.1 | <0.1 | 0%       | NA   | NA    | NA       |
| Benzo (ghi) perylene         LB082886         mg/kg         0.1         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benzo (a) pyrene                 | LB082866 | mg/kg | 0.1 | <0.1 | 0%       | NA   | NA    | NA       |
| Benzo (i) fluoranthene         LB082886         mg/kg         0.1         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Benzo (b+j) fluoranthene         | LB082866 | mg/kg | 0.1 | <0.1 | 0%       | NA   | NA    | NA       |
| Deta BHC   LB082866   mg/kg   0.5   <0.5   0.5   0.6   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzo (ghi) perylene             | LB082866 | mg/kg | 0.1 | <0.1 | 0%       | NA   | NA    | NA       |
| Delate BHC   LB082868   mg/kg   0.5   <0.5   0%   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzo (k) fluoranthene           | LB082866 | mg/kg | 0.1 | <0.1 | 0%       | NA   | NA    | NA       |
| Dibenz (ah) anthracene   LB082866 mg/kg   0.1   -0.1   0%   NA   NA   NA   NA   Diedrin   LB082866 mg/kg   0.5   -0.5   0%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%   100%     | beta-BHC                         | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | NA   |       |          |
| Dieldrin         LB082866         mg/kg         0.5         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | delta-BHC                        | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | NA   |       |          |
| Endosulfan 1         L8082866         mg/kg         0.5         < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dibenz (ah) anthracene           | LB082866 | mg/kg | 0.1 | <0.1 | 0%       | NA   | NA    | NA       |
| Endosulfan 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dieldrin                         | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | 109% |       |          |
| Endosulfan Sulphate         LB082866         mg/kg         0.5         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Endosulfan 1                     | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | NA   |       |          |
| Endrin         LB082866         mg/kg         0.5         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Endosulfan 2                     | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | NA   |       |          |
| Endrin Aldehyde         LB082866         mg/kg         0.5         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Endosulfan Sulphate              | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | NA   |       |          |
| Fluoranthene   LB082866   mg/kg   0.1   <0.1   0%   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Endrin                           | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | 28%  |       |          |
| Fluorene   LB082866   mg/kg   0.1   <0.1   0%   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Endrin Aldehyde                  | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | NA   |       |          |
| Bamma-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fluoranthene                     | LB082866 | mg/kg | 0.1 | <0.1 | 0%       | NA   | NA    | NA       |
| Heptachlor   LB082866   mg/kg   0.5   <0.5   0%   96%     Heptachlor Epoxide   LB082866   mg/kg   0.5   <0.5   0%   0%   NA     Indeno (1,2,3-cd) pyrene   LB082866   mg/kg   0.1   <0.1   0%   NA   NA   NA   NA     Isodrin   LB082866   mg/kg   0.5   <0.5   0%   NA     Methoxychlor   LB082866   mg/kg   0.5   <0.5   0%   NA     Naphthalene   LB082866   mg/kg   0.5   <0.5   0%   NA     Naphthalene   LB082866   mg/kg   0.1   <0.1   0%   NA   NA   NA   NA     Phenanthrene   LB082866   mg/kg   0.5   <0.5   0%   NA   NA   NA   NA     Pyrene   LB082866   mg/kg   0.5   <0.5   0%   NA   NA   NA   NA     Pyrene   LB082866   mg/kg   0.5   <0.5   0%   81%   111%   2%     Total OC Pesticides   LB082866   mg/kg   1   <1.0   0%   NA     Total PCBs   LB082866   mg/kg   1   <1.0   0%   NA     Total PCBs   LB082866   mg/kg   1   <1.0   0%   NA     Fluorobjehenol (surrogate)   LB082866   %   - 72%   4-15%   72%   125%   3%     Fluorobjehenol (surrogate)   LB082866   %   - 97%   2%   79%   79%   1%     Fluorobjehenol (surrogate)   LB082866   %   - 143%   1%   138%   158%   27%     Nitrobenzene-D5 (surrogate)   LB082866   %   - 109%   4%   84%   64%   3%     Fluorophenol/Lot (surrogate)   LB082866   %   - 109%   4%   84%   64%   3%     Fluorophenol/Lot (surrogate)   LB082866   %   - 109%   4%   84%   64%   3%     Fluorophenol/Lot (surrogate)   LB082866   %   - 109%   4%   84%   64%   3%     Fluorophenol/Lot (surrogate)   LB082866   %   - 109%   4%   84%   64%   3%     Fluorophenol/Lot (surrogate)   LB082866   %   - 109%   4%   84%   64%   3%     Fluorophenol/Lot (surrogate)   LB082866   %   - 109%   4%   84%   64%   3%     Fluorophenol/Lot (surrogate)   LB082866   %   - 109%   4%   84%   64%   3%     Fluorophenol/Lot (surrogate)   LB082866   %   - 109%   4%   84%   64%   3%     Fluorophenol/Lot (surrogate)   LB082866   %   - 109%   4%   84%   64%   3%     Fluorophenol/Lot (surrogate)   LB082866   %   - 109%   4%   84%   64%   3%     Fluorophenol/Lot (surrogate)   LB082866   %   - 109%   109%   109%   109%   109%   109%   109%   109 | Fluorene                         | LB082866 | mg/kg | 0.1 | <0.1 | 0%       | NA   | NA    | NA       |
| Heptachlor Epoxide   LB082866   mg/kg   0.5   <0.5   0%   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gamma-BHC                        | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | 79%  |       |          |
| Indeno (1,2,3-cd) pyrene   LB082866   mg/kg   0.1   <0.1   0%   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heptachlor                       | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | 96%  |       |          |
| Isodrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Heptachlor Epoxide               | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | NA   |       |          |
| Methoxychlor         LB082866         mg/kg         0.5         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Indeno (1,2,3-cd) pyrene         | LB082866 | mg/kg | 0.1 | <0.1 | 0%       | NA   | NA    | NA       |
| Naphthalene         LB082866         mg/kg         0.1         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Isodrin                          | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | NA   |       |          |
| Phenanthrene   LB082866   mg/kg   0.5   <0.5   0%   NA   NA   NA   NA   NA   Pyrene   LB082866   mg/kg   0.5   <0.5   0%   81%   111%   2%   2%   2%   2%   2%   2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methoxychlor                     | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | NA   |       |          |
| Pyrene         LB082866         mg/kg         0.5         <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Naphthalene                      | LB082866 | mg/kg | 0.1 | <0.1 | 0%       | NA   | NA    | NA       |
| Total OC Pesticides         LB082866         mg/kg         1         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Phenanthrene                     | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | NA   | NA    | NA       |
| Total PCBs         LB082866         mg/kg         1         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pyrene                           | LB082866 | mg/kg | 0.5 | <0.5 | 0%       | 81%  | 111%  | 2%       |
| 2.4,6-Tribromophenol (surrogate)       LB082866       %       -       72%       4 - 15%       72%       125%       3%         Fluorobiphenyl (surrogate)       LB082866       %       -       97%       2%       79%       79%       1%         Fluorophenol (surrogate)       LB082866       %       -       143%       1%       138%       158%       27%         Nitrobenzene-D5 (surrogate)       LB082866       %       -       109%       4%       84%       64%       3%         p-Terphenyl-D14 (surrogate)       LB082866       %       -       92%       1 - 7%       74%       107%       3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total OC Pesticides              | LB082866 | mg/kg | 1   | <1.0 | 0%       | NA   |       |          |
| Fluorobiphenyl (surrogate)         LB082866         %         -         97%         2%         79%         79%         1%           Fluorophenol (surrogate)         LB082866         %         -         143%         1%         138%         158%         27%           Nitrobenzene-D5 (surrogate)         LB082866         %         -         109%         4%         84%         64%         3%           p-Terphenyl-D14 (surrogate)         LB082866         %         -         92%         1 - 7%         74%         107%         3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total PCBs                       | LB082866 | mg/kg | 1   | <1.0 | 0%       | NA   |       |          |
| Fluorophenol (surrogate)         LB082866         %         -         143%         1%         138%         158%         27%           Nitrobenzene-D5 (surrogate)         LB082866         %         -         109%         4%         84%         64%         3%           p-Terphenyl-D14 (surrogate)         LB082866         %         -         92%         1 - 7%         74%         107%         3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,4,6-Tribromophenol (surrogate) | LB082866 | %     | -   | 72%  | 4 - 15%  | 72%  | 125%  | 3%       |
| Nitrobenzene-D5 (surrogate)         LB082866         %         -         109%         4%         84%         64%         3%           p-Terphenyl-D14 (surrogate)         LB082866         %         -         92%         1 - 7%         74%         107%         3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fluorobiphenyl (surrogate)       | LB082866 | %     | -   | 97%  | 2%       | 79%  | 79%   | 1%       |
| p-Terphenyl-D14 (surrogate) LB082866 % - 92% 1 - 7% 74% 107% 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fluorophenol (surrogate)         | LB082866 | %     | -   | 143% | 1%       | 138% | 158%  | 27%      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nitrobenzene-D5 (surrogate)      | LB082866 | %     | -   | 109% | 4%       | 84%  | 64%   | 3%       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p-Terphenyl-D14 (surrogate)      | LB082866 | %     | -   | 92%  | 1 - 7%   | 74%  | 107%  | 3%       |
| FileHot-Do (surrogate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Phenol-D6 (surrogate)            | LB082866 | %     | -   | 107% | 1 - 3%   | 93%  | 35%   | 6%       |

28-November-2024 Page 14 of 19





#### MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

#### Metals/Elements in Solids Method: MA1400\_1

| Parameter | QC        | Units | LOR  | DUP %RPD | LCS       | MS        | MSD %RPD |
|-----------|-----------|-------|------|----------|-----------|-----------|----------|
|           | Reference |       |      |          | %Recovery | %Recovery |          |
| Arsenic   | LB082951  | mg/kg | 2    | 10 - 23% | 93%       | 80%       | 0%       |
| Cadmium   | LB082951  | mg/kg | 0.2  | 0%       | 105%      | 80%       | 3%       |
| Chromium  | LB082951  | mg/kg | 2    | 3 - 17%  | 108%      | 78%       | 1%       |
| Copper    | LB082951  | mg/kg | 2    | 4 - 10%  | 109%      | 80%       | 1%       |
| Lead      | LB082951  | mg/kg | 2    | 11 - 14% | 117%      | 113%      | 1%       |
| Mercury   | LB082951  | mg/kg | 0.05 | 0%       | 105%      | 75%       | 1%       |
| Nickel    | LB082951  | mg/kg | 2    | 1 - 16%  | 100%      | 72%       | 0%       |
| Zinc      | LB082951  | mg/kg | 2    | 2 - 15%  | 99%       | 101%      | 2%       |

#### Moisture Content Method: ME-(AU)-[ENV]AN002

|   | Parameter  | QC        | Units | LOR | DUP %RPD |
|---|------------|-----------|-------|-----|----------|
|   |            | Reference |       |     |          |
| Г | % Moisture | LB082872  | %w/w  | 1   | 15%      |

#### TRH in soil MA-30.SL.01 Method: MA30

| Parameter                         | QC        | Units | LOR | MB  | DUP %RPD | LCS       | MS        | MSD %RPD |
|-----------------------------------|-----------|-------|-----|-----|----------|-----------|-----------|----------|
|                                   | Reference |       |     |     |          | %Recovery | %Recovery |          |
| TRH C6-C9 (P&T)                   | LB082867  | mg/kg | 10  | <10 | 0%       | NA        | NA        | NA       |
| TRH C10-C14                       | LB082867  | mg/kg | 10  | <10 | 0 - 23%  | NA        | NA        | NA       |
| TRH >C10-C16                      | LB082867  | mg/kg | 10  | <10 | 0 - 27%  | NA        | NA        | NA       |
| TRH>C10-C16 less naphthalene (F2) | LB082867  | mg/kg | 10  | <10 | 0 - 27%  | NA        | NA        | NA       |
| TRH >C16-C34 (F3)                 | LB082867  | mg/kg | 20  | <20 | 31%      | NA        | NA        | NA       |
| TRH C15-C28                       | LB082867  | mg/kg | 20  | <20 | 12 - 30% | NA        | NA        | NA       |
| TRH C29-C36                       | LB082867  | mg/kg | 20  | <20 | 17 - 19% | NA        | NA        | NA       |
| C6-C10 (P&T) less BTEX (F1)       | LB082867  | mg/kg | 10  | <10 | 0%       | NA        | NA        | NA       |
| Total TRH C10-C36                 | LB082867  | mg/kg | 20  | <20 | 14 - 28% | 86%       | 63%       | NA       |
| TRH >C34-C40 (F4)                 | LB082867  | mg/kg | 20  | <20 | 5 - 6%   | NA        | NA        | NA       |
| TRH C6-C10 (P&T)                  | LB082867  | mg/kg | 10  | <10 | 0%       | NA        | NA        | NA       |
| Total TRH C6-C36                  | LB082867  | mg/kg | 20  | <20 | 14 - 28% | NA        | NA        | NA       |
| Total TRH C6-C40 (F)              | LB082867  | mg/kg | 20  | <20 | 28 - 31% | NA        | NA        | NA       |
| TRH >C10-C40 (F)                  | LB082867  | mg/kg | 20  | <20 | 28 - 31% | NA        | NA        | NA       |

28-November-2024 Page 15 of 19





# **QC SUMMARY**

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

#### USEPA 8260B Volatile Organic Compounds in Solids/Soils Method: USEPA 8260 B

| ı | Parameter   | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        | MSD %RPD |
|---|-------------|-----------|-------|-----|------|----------|-----------|-----------|----------|
| ı |             | Reference |       |     |      |          | %Recovery | %Recovery |          |
| I | m&p-Xylenes | LB082871  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        | NA       |
| ı | Total BTEX  | LB082871  | mg/kg | 0.5 | <0.5 | 0%       | NA        | NA        | NA       |

#### Monocyclic Aromatic Hydrocarbons

| Parameter    | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        | MSD %RPD |
|--------------|-----------|-------|-----|------|----------|-----------|-----------|----------|
|              | Reference |       |     |      |          | %Recovery | %Recovery |          |
| Benzene      | LB082871  | mg/kg | 0.1 | <0.1 | 0%       | 107%      | 105%      | 1%       |
| Toluene      | LB082871  | mg/kg | 0.1 | <0.1 | 0%       | 99%       | 97%       | 0%       |
| Ethylbenzene | LB082871  | mg/kg | 0.1 | <0.1 | 0%       | 100%      | 98%       | 1%       |
| o-Xylenes    | LB082871  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        | NA       |

#### Polycyclic Aromatic Hydrocarbons

| ı | Parameter         | QC        | Units | LOR | MB   | DUP %RPD | LCS       | MS        | MSD %RPD |
|---|-------------------|-----------|-------|-----|------|----------|-----------|-----------|----------|
| П |                   | Reference |       |     |      |          | %Recovery | %Recovery |          |
| ı | Naphthalene (VOC) | LB082871  | mg/kg | 0.1 | <0.1 | 0%       | NA        | NA        | NA       |

#### Surrogates

| Parameter              | QC        | Units | LOR | MB  | DUP %RPD | LCS       | MS        | MSD %RPD |
|------------------------|-----------|-------|-----|-----|----------|-----------|-----------|----------|
|                        | Reference |       |     |     |          | %Recovery | %Recovery |          |
| Toluene-d8 (surrogate) | LB082871  | %     | -   | 76% | 14%      | 93%       | 89%       | 0%       |

#### Volatile Petroleum Hydrocarbons in soil Method: MA30-VPH

| Parameter                       | QC        | Units | LOR | MB  | DUP %RPD | LCS       | MS        | MSD %RPD |
|---------------------------------|-----------|-------|-----|-----|----------|-----------|-----------|----------|
|                                 | Reference |       |     |     |          | %Recovery | %Recovery |          |
| TRH C6-C9 (P&T)                 | LB082871  | mg/kg | 10  | <10 | 0%       | 101%      | 109%      | NA       |
| TRH C6-C10 (P&T)                | LB082871  | mg/kg | 10  | <10 | 0%       | 92%       | 104%      | NA       |
| TRH C6-C10 (P&T) less BTEX (F1) | LB082871  | mg/kg | 10  | <10 | 0%       | NA        | NA        | NA       |

28-November-2024 Page 16 of 19



#### **METHOD SUMMARY**



METHOD

METHODOLOGY SUMMARY

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN602/AS4964

Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

AN602/AS4964

Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.

AN602/AS4964

AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection/reporting limit (RL) of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602/AS4964

The sample can be reported "no asbestos found at the reporting limit (RL) of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-

- (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):
- (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and
- (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

MA 8270

This method covers analytical procedures for the analysis of semi-volatile organic compounds (SVOC) including most neutral, acidic, and basic organic compounds based on the USEPA method 8270D. Samples are extracted into a solvent appropriate to the matrix and analysed using a gas chromatograph – mass spectrometer (GC–MS) Total PAH calculated from individual analyte detections at or above the limit of reporting .

MA1400 1

A weighed portion of as received sample is extracted in concentrated acid using microwave heating by the Microwave Digestion system. The sample and acid are placed in a microwave vessel (TFM), which is then capped and heated in the microwave unit. After cooling,the vessel contents are diluted with DI water, then filtered, centrifuged, or allowed to settle and analysed by ICP-MS.

MA-30

This method is used for the analysis of Total Recoverable Hydrocarbons (TRH). TRH is a generic term for all extractable organic compounds and includes all hydrocarbons and hydrocarbon derivatives that have between six and forty carbons per molecule i.e. compounds in the range >C5 to C40.

The reporting of Total Recoverable Hydrocarbons is done by grouping compounds of similar nature and behaviour into "fractions".

Samples are extracted into a solvent appropriate to the matrix. The extract is then analysed using a gas chromatograph with either a flame ionisation detector (GC-FID) or a mass spectrometer (GC-MS)

MA30 -VPH

This method is used to quantify Volatile Petroleum Hydrocarbon (VPH) fractions using Gas Chromatography Mass Spectrometry coupled with a purge and trap sample concentrator. This method is based on USEPA 8260B (Volatile Organic Compounds by Gas Chromatography Mass Spectrometry GC/MS), using USEPA 5035 (Closed system purge and trap and extraction for volatile organics in soil and solid waste samples.).

28-November-2024 Page 17 of 19



# METHOD SUMMARY



METHOD

METHODOLOGY SUMMARY

MA30-VPH

A sample is weighed out, and has surrogates added and is extracted in methanol. This methanol extract is then diluted in water. A stream of helium is passed through a portion of the extracted sample; the volatile components are 'purged' from the sample and are collected and concentrated on an adsorbent trap. The trap is rapidly heated and back-flushed with helium to 'desorb' the analytes onto the Gas Chromatographic column. The GC column separates the analytes and they are passed into the Mass Selective detector, which fragments the molecules and produces "mass spectra" of each compound.

MA8270

Carcinogenic PAHs may be expressed as Benzo(a)pyrene equivalents by applying the BaP toxicity equivalence factor (NEPM 1999, June 2013, B7). These can be reported as the individual PAHs and as a sum of carcinogenic PAHs. The sum is reported three ways, the first assuming all <LOR results are zero, the second assuming all <LOR results are the LOR.

MA8270 Pes

This method covers analytical procedures for the analysis of semi-volatile organic compounds (SVOC pesticides) including most neutral, acidic, and basic organic compounds based on the USEPA method 8270D. Samples are extracted into a solvent appropriate to the matrix and analysed using a gas chromatograph – triple quadrapole (GC–QQQ).

USEPA 8260B

This method is used to quantify Volatile Organic Compounds using Gas Chromatography Mass Spectrometry coupled with a purge and trap sample concentrator. This method is based on USEPA 8260B (Volatile Organic Compounds by Gas Chromatography Mass Spectrometry GC/MS), using USEPA 5035 (Closed system purge and trap and extraction for volatile organics in soil and solid waste samples.).

USEPA 8260B

A sample is weighed out, and has surrogates added and is extracted in methanol. This methanol extract is then diluted in water. A stream of helium is passed through a portion of the extracted sample; the volatile components are 'purged' from the sample and are collected and concentrated on an adsorbent trap. The trap is rapidly heated and back-flushed with helium to 'desorb' the analytes onto the Gas Chromatographic column. The GC column separates the analytes and they are passed into the Mass Selective detector, which fragments the molecules and produces "mass spectra" of each compound.

28-November-2024 Page 18 of 19







FOOTNOTES

IS Insufficient sample for analysis. LOR Limit of Reporting LNR Sample listed, but not received. Raised or Lowered Limit of Reporting ↑↓ NATA accreditation does not cover the OFH QC result is above the upper tolerance performance of this service QFI QC result is below the lower tolerance Indicative data, theoretical holding time exceeded. The sample was not analysed for this analyte Indicates that both \* and \*\* apply. NVI Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <a href="https://www.sgs.com.au/en-gb/environment-health-and-safety">www.sgs.com.au/en-gb/environment-health-and-safety</a>.

This document is issued by the Company under its General Conditions of Service accessible at <a href="www.sgs.com/en/Terms-and-Conditions.aspx">www.sgs.com/en/Terms-and-Conditions.aspx</a>.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

28-November-2024 Page 19 of 19





# STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS \_\_\_\_\_ LABORATORY DETAILS \_\_\_\_\_

 Contact
 Nick Caltabiano
 Manager
 Adam Atkinson

 Client
 NEO CONSULTING PTY LTD
 Laboratory
 SGS Melbourne EH&S

 Address
 PO BOX 279
 Address
 10/585 Blackburn Road

RIVERSTONE NSW 2765 Notting Hill Victoria 3168

Telephone 0416 680 375 | 0455 485 502 Telephone +61395743200

Facsimile (Not specified) Facsimile +61395743399

Facsimile nick@neoconsulting.com.au Fmail Au.SampleReceipt.Melbourne@sgs.com

Email nick@neoconsulting.com.au Email Au.SampleReceipt.Melbourne@se

 Project
 N10167
 SGS Reference
 ME368667 R0

 Order Number
 N10167
 Date Received
 20 Nov 2024

 Samples
 10
 Date Reported
 28 Nov 2024

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Surrogate 8270D.SL.01 SVOCs All in Solids/Soils 14 items

 Duplicate
 TRH in soil\_MA-30.SL.01
 2 items

 LCS
 8270D.SL.01 SVOCs All in Solids/Soils
 1 item

Matrix Spike TRH in soil MA-30.SL.01 1 item

SAMPLE SUMMARY

Sample counts by matrix 10 Soil Type of documentation received COC Date documentation received 20/11/2024 Samples received in good order Yes Sample container provider SGS Sample temperature upon receipt 38 Samples received in correct containers Turnaround time requested 3 days Yes Sufficient sample for analysis Yes Sample cooling method Ice cubs Samples clearly labelled Yes Complete documentation received Yes Number of eskies/boxes received

SGS Australia Pty Ltd ABN 44 000 964 278 t +61 3 9574 3200
Environment, Health and Bldg 10, 585 Blackburn Rd Notting Hill VIC Australia f +61 3 9574 3399



#### **HOLDING TIME SUMMARY**

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

|                           | alysis dates are shown supplied then compliance |          |              |                            |                |                            |              | d criteria. If the  |
|---------------------------|-------------------------------------------------|----------|--------------|----------------------------|----------------|----------------------------|--------------|---------------------|
| 8270D.SL.01 SVOCs All in  | n Solids/Soils                                  |          |              |                            |                |                            |              | Method: MA 827      |
| Sample Name               | Sample No.                                      | QC Ref   | Sampled      | Received                   | Extraction Due | Extracted                  | Analysis Due | Analysed            |
| S1                        | ME368667.001                                    | LB082866 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 31 Dec 2024  | 25 Nov 2024         |
| S2                        | ME368667.002                                    | LB082866 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 31 Dec 2024  | 25 Nov 2024         |
| S3                        | ME368667.003                                    | LB082866 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 31 Dec 2024  | 25 Nov 2024         |
| S4                        | ME368667.004                                    | LB082866 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 31 Dec 2024  | 25 Nov 2024         |
| S5                        | ME368667.005                                    | LB082866 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 31 Dec 2024  | 25 Nov 2024         |
| S6                        | ME368667.006                                    | LB082866 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 31 Dec 2024  | 25 Nov 2024         |
| S7                        | ME368667.007                                    | LB082866 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 31 Dec 2024  | 25 Nov 2024         |
| S8                        | ME368667.008                                    | LB082866 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 31 Dec 2024  | 25 Nov 2024         |
| S9                        | ME368667.009                                    | LB082866 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 31 Dec 2024  | 25 Nov 2024         |
| Duplicate                 | ME368667.010                                    | LB082866 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 31 Dec 2024  | 25 Nov 2024         |
| Combined SVOC Pesticide   |                                                 | <u> </u> | 20 1404 2024 | 20 1404 2024               | 04 000 2024    | 211107 2024                | 01 000 2024  | Method: MA 827      |
|                           |                                                 | 000.     |              |                            | b              |                            |              |                     |
| Sample Name               | Sample No.                                      | QC Ref   | Sampled      | Received                   | Extraction Due | Extracted                  | Analysis Due | Analysed            |
| S1                        | ME368667.001                                    | LB083097 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 27 Nov 2024                | 06 Jan 2025  | 28 Nov 2024         |
| S2                        | ME368667.002                                    | LB083097 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 27 Nov 2024                | 06 Jan 2025  | 28 Nov 2024         |
| S3                        | ME368667.003                                    | LB083097 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 27 Nov 2024                | 06 Jan 2025  | 28 Nov 2024         |
| S4                        | ME368667.004                                    | LB083097 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 27 Nov 2024                | 06 Jan 2025  | 28 Nov 2024         |
| S5                        | ME368667.005                                    | LB083097 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 27 Nov 2024                | 06 Jan 2025  | 28 Nov 2024         |
| S6                        | ME368667.006                                    | LB083097 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 27 Nov 2024                | 06 Jan 2025  | 28 Nov 2024         |
| S7                        | ME368667.007                                    | LB083097 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 27 Nov 2024                | 06 Jan 2025  | 28 Nov 2024         |
| S8                        | ME368667.008                                    | LB083097 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 27 Nov 2024                | 06 Jan 2025  | 28 Nov 2024         |
| S9                        | ME368667.009                                    | LB083097 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 27 Nov 2024                | 06 Jan 2025  | 28 Nov 2024         |
| Duplicate                 | ME368667.010                                    | LB083097 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 27 Nov 2024                | 06 Jan 2025  | 28 Nov 2024         |
| Metals/Elements in Solids |                                                 |          |              |                            |                |                            |              | Method: MA1400_     |
| Sample Name               | Sample No.                                      | QC Ref   | Sampled      | Received                   | Extraction Due | Extracted                  | Analysis Due | Analysed            |
| S1                        | ME368667.001                                    | LB082951 | 20 Nov 2024  | 20 Nov 2024                | 19 May 2025    | 25 Nov 2024                | 19 May 2025  | 26 Nov 2024         |
| S2                        | ME368667.002                                    | LB082951 | 20 Nov 2024  | 20 Nov 2024                | 19 May 2025    | 25 Nov 2024                | 19 May 2025  | 26 Nov 2024         |
| S3                        | ME368667.003                                    | LB082951 | 20 Nov 2024  | 20 Nov 2024                | 19 May 2025    | 25 Nov 2024                | 19 May 2025  | 26 Nov 2024         |
| S4                        | ME368667.004                                    | LB082951 | 20 Nov 2024  | 20 Nov 2024                | 19 May 2025    | 25 Nov 2024                | 19 May 2025  | 26 Nov 2024         |
| S5                        | ME368667.005                                    | LB082951 | 20 Nov 2024  | 20 Nov 2024                | 19 May 2025    | 25 Nov 2024                | 19 May 2025  | 26 Nov 2024         |
| S6                        | ME368667.006                                    | LB082951 | 20 Nov 2024  | 20 Nov 2024                | 19 May 2025    | 25 Nov 2024                | 19 May 2025  | 26 Nov 2024         |
| S7                        | ME368667.007                                    | LB082951 | 20 Nov 2024  | 20 Nov 2024                | 19 May 2025    | 25 Nov 2024                | 19 May 2025  | 26 Nov 2024         |
| S8                        | ME368667.008                                    | LB082951 | 20 Nov 2024  | 20 Nov 2024                | 19 May 2025    | 25 Nov 2024                | 19 May 2025  | 26 Nov 2024         |
| S9                        | ME368667.009                                    | LB082951 | 20 Nov 2024  | 20 Nov 2024                | 19 May 2025    | 25 Nov 2024                | 19 May 2025  | 26 Nov 2024         |
| Duplicate                 | ME368667.010                                    | LB082951 | 20 Nov 2024  | 20 Nov 2024                | 19 May 2025    | 25 Nov 2024                | 19 May 2025  | 26 Nov 2024         |
| Moisture Content          |                                                 |          |              |                            |                |                            | Method:      | : ME-(AU)-[ENV]AN00 |
| Sample Name               | Sample No.                                      | QC Ref   | Sampled      | Received                   | Extraction Due | Extracted                  | Analysis Due | Analysed            |
| S1                        | ME368667.001                                    | LB082872 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 26 Nov 2024  | 22 Nov 2024         |
| S2                        | ME368667.002                                    | LB082872 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 26 Nov 2024  | 22 Nov 2024         |
| S3                        | ME368667.003                                    | LB082872 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 26 Nov 2024  | 22 Nov 2024         |
| S4                        | ME368667.004                                    | LB082872 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 26 Nov 2024  | 22 Nov 2024         |
| S5                        | ME368667.005                                    | LB082872 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 26 Nov 2024  | 22 Nov 2024         |
| S6                        | ME368667.006                                    | LB082872 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 26 Nov 2024  | 22 Nov 2024         |
| S7                        | ME368667.007                                    | LB082872 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 26 Nov 2024  | 22 Nov 2024         |
| S8                        | ME368667.008                                    | LB082872 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 26 Nov 2024  | 22 Nov 2024         |
| S9                        | ME368667.009                                    | LB082872 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 26 Nov 2024  | 22 Nov 2024         |
| Duplicate                 | ME368667.010                                    | LB082872 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 26 Nov 2024  | 22 Nov 2024         |
| TRH in soil MA-30.SL.01   |                                                 | -        | <u> </u>     |                            |                | -                          |              | Method: MA3         |
| Sample Name               | Sample No.                                      | QC Ref   | Sampled      | Received                   | Extraction Due | Extracted                  | Analysis Due | Analysed            |
| S1                        | ME368667.001                                    | LB082867 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 31 Dec 2024  | 26 Nov 2024         |
| S2                        | ME368667.002                                    | LB082867 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024                | 31 Dec 2024  | 26 Nov 2024         |
| S3                        | ME368667.003                                    | LB082867 | 20 Nov 2024  | 20 Nov 2024<br>20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024<br>21 Nov 2024 | 31 Dec 2024  | 26 Nov 2024         |
| S4                        | ME368667.004                                    | LB082867 | 20 Nov 2024  | 20 Nov 2024<br>20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024<br>21 Nov 2024 | 31 Dec 2024  | 26 Nov 2024         |
| S5                        | ME368667.005                                    | LB082867 | 20 Nov 2024  | 20 Nov 2024                | 04 Dec 2024    | 21 Nov 2024<br>21 Nov 2024 | 31 Dec 2024  | 26 Nov 2024         |
| 00                        | 0000.10000C⊒IVI                                 | LD002007 | ZU INUV ZUZ4 | ZU INUV ZUZ4               | 04 DeC 2024    | Z 1 INUV ZUZ4              | 31 DeC 2024  | ZU INUV ZUZ4        |

28/11/2024 Page 2 of 16

20 Nov 2024

04 Dec 2024

21 Nov 2024

31 Dec 2024

26 Nov 2024

26 Nov 2024

26 Nov 2024

ME368667.007

ME368667.008

ME368667.010

S6

S7

S8

Duplicate

LB082867

LB082867

LB082867

LB082867

20 Nov 2024





#### **HOLDING TIME SUMMARY**

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### USEPA 8260B Volatile Organic Compounds in Solids/Soils

#### Method: USEPA 8260 B

| Sample Name | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|-------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| S1          | ME368667.001 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024 |
| S2          | ME368667.002 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024 |
| S3          | ME368667.003 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024 |
| S4          | ME368667.004 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024 |
| S5          | ME368667.005 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024 |
| S6          | ME368667.006 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024 |
| S7          | ME368667.007 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024 |
| S8          | ME368667.008 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024 |
| S9          | ME368667.009 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024 |
| Duplicate   | ME368667.010 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024 |

## Volatile Petroleum Hydrocarbons in soil

#### Method: MA30-VPH

| Volatile Petroleum Hydrocarbon | s in soil    |          |             |             |                |             |              | Method: MA30-VPH |
|--------------------------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|------------------|
| Sample Name                    | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed         |
| S1                             | ME368667.001 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024      |
| S2                             | ME368667.002 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024      |
| S3                             | ME368667.003 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024      |
| S4                             | ME368667.004 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024      |
| S5                             | ME368667.005 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024      |
| S6                             | ME368667.006 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024      |
| S7                             | ME368667.007 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024      |
| S8                             | ME368667.008 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024      |
| S9                             | ME368667.009 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024      |
| Duplicate                      | ME368667.010 | LB082871 | 20 Nov 2024 | 20 Nov 2024 | 04 Dec 2024    | 21 Nov 2024 | 04 Dec 2024  | 26 Nov 2024      |

28/11/2024 Page 3 of 16



# **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

8270D.SL.01 SVOCs All in Solids/Soils Method: MA 8270

| Parameter                             | Sample Name       | Sample Number                | Units  | Criteria               | Recovery % |
|---------------------------------------|-------------------|------------------------------|--------|------------------------|------------|
| 2,4,6-Tribromophenol (surrogate)      | S1                | ME368667.001                 | %      | 60 - 140%              | 58 †       |
| 2,4,0-mbiomophenoi (surrogate)        | S2                | ME368667.002                 | %<br>% | 60 - 140%              | 56 †       |
|                                       | S3                | ME368667.003                 | %<br>% | 60 - 140%              | 59 †       |
|                                       | S4                | ME368667.004                 | %<br>% | 60 - 140%              | 52 †       |
|                                       | S5                | ME368667.005                 | %      | 60 - 140%              | 51 †       |
|                                       | S6                | ME368667.006                 | %      | 60 - 140%              | 57 †       |
|                                       | S7                | ME368667.007                 | %      | 60 - 140%              | 53 †       |
|                                       | S8                | ME368667.008                 | %      | 60 - 140%              | 55 †       |
|                                       | S9                | ME368667.009                 | %      | 60 - 140%              | 55 †       |
|                                       | Duplicate         | ME368667.010                 | %      | 60 - 140%              | 53 †       |
| Fluorobiphenyl (surrogate)            | S1                | ME368667.001                 | %      | 60 - 140%              | 86         |
|                                       | S2                | ME368667.002                 | %      | 60 - 140%              | 84         |
|                                       | S3                | ME368667.003                 | %      | 60 - 140%              | 84         |
|                                       | S4                | ME368667.004                 | %      | 60 - 140%              | 82         |
|                                       | S5                | ME368667.005                 | %      | 60 - 140%              | 85         |
|                                       | S6                | ME368667.006                 | %      | 60 - 140%              | 84         |
|                                       | S7                | ME368667.007                 | %      | 60 - 140%              | 83         |
|                                       | S8                | ME368667.008                 | %      | 60 - 140%              | 82         |
|                                       | S9                | ME368667.009                 | %      | 60 - 140%              | 82         |
|                                       | Duplicate         | ME368667.010                 | %      | 60 - 140%              | 83         |
| Fluorophenol (surrogate)              | S1                | ME368667.001                 | %      | 60 - 140%              | 134        |
|                                       | S2                | ME368667.002                 | %      | 60 - 140%              | 128        |
|                                       | S3                | ME368667.003                 | %      | 60 - 140%              | 138        |
|                                       | S4                | ME368667.004                 | %      | 60 - 140%              | 147 †      |
|                                       | S5                | ME368667.005                 | %      | 60 - 140%              | 156 †      |
|                                       | S6                | ME368667.006                 | %      | 60 - 140%              | 136        |
|                                       | S7                | ME368667.007                 | %      | 60 - 140%              | 143 †      |
|                                       | S8                | ME368667.008                 | %      | 60 - 140%              | 131        |
|                                       | S9                | ME368667.009                 | %      | 60 - 140%              | 139        |
|                                       | Duplicate         | ME368667.010                 | %      | 60 - 140%              | 141 †      |
| Nitrobenzene-D5 (surrogate)           | S1                | ME368667.001                 | %      | 60 - 140%              | 94         |
| , , , , , , , , , , , , , , , , , , , | S2                | ME368667.002                 | %      | 60 - 140%              | 90         |
|                                       | S3                | ME368667.003                 | %      | 60 - 140%              | 94         |
|                                       | S4                | ME368667.004                 | %      | 60 - 140%              | 90         |
|                                       | S5                | ME368667.005                 | %      | 60 - 140%              | 92         |
|                                       | S6                | ME368667.006                 | %      | 60 - 140%              | 88         |
|                                       | S7                | ME368667.007                 | %      | 60 - 140%              | 91         |
|                                       | S8                | ME368667.008                 | %      | 60 - 140%              | 91         |
|                                       | S9                | ME368667.009                 | %      | 60 - 140%              | 86         |
|                                       | Duplicate         | ME368667.010                 | %      | 60 - 140%              | 91         |
| Phenol-D6 (surrogate)                 | S1                | ME368667.001                 | %      | 60 - 140%              | 91         |
|                                       | S2                | ME368667.002                 | %      | 60 - 140%              | 88         |
|                                       | S3                | ME368667.003                 | %      | 60 - 140%              | 89         |
|                                       | S4                | ME368667.004                 | %      | 60 - 140%              | 89         |
|                                       | S5                | ME368667.005                 | %      | 60 - 140%              | 94         |
|                                       | S6                | ME368667.006                 | %      | 60 - 140%              | 90         |
|                                       | S7                | ME368667.007                 | %      | 60 - 140%              | 92         |
|                                       | S8                | ME368667.008                 | %      | 60 - 140%              | 90         |
|                                       | S9                | ME368667.009                 | %      | 60 - 140%              | 89         |
|                                       | Duplicate         | ME368667.010                 | %      | 60 - 140%              | 95         |
| p-Terphenyl-D14 (surrogate)           | S1                | ME368667.001                 | %      | 60 - 140%              | 80         |
|                                       | S2                | ME368667.002                 | %      | 60 - 140%              | 78         |
|                                       | S3                | ME368667.003                 | %      | 60 - 140%              | 78         |
|                                       | S4                | ME368667.004                 | %      | 60 - 140%              | 80         |
|                                       | S5                | ME368667.005                 | %      | 60 - 140%              | 77         |
|                                       | S6                | ME368667.006                 | %      | 60 - 140%              | 80         |
|                                       |                   | ME368667.007                 | %<br>% | 60 - 140%              | 77         |
|                                       | S/                |                              |        |                        |            |
|                                       | <u>\$7</u><br>\$8 |                              |        |                        | 77         |
|                                       | S7<br>S8<br>S9    | ME368667.008<br>ME368667.009 | %      | 60 - 140%<br>60 - 140% | 77<br>77   |

28/11/2024 Page 4 of 16



# SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Combined SVOC Pesticides in Solids/Soils

#### Method: MA 8270

| Parameter                   | Sample Name | Sample Number | Units | Criteria  | Recovery % |
|-----------------------------|-------------|---------------|-------|-----------|------------|
| d14-p-terphenyl (Surrogate) | S1          | ME368667.001  | %     | 40 - 130% | 102        |
|                             | S2          | ME368667.002  | %     | 40 - 130% | 103        |
|                             | S3          | ME368667.003  | %     | 40 - 130% | 101        |
|                             | S4          | ME368667.004  | %     | 40 - 130% | 101        |
|                             | S5          | ME368667.005  | %     | 40 - 130% | 104        |
|                             | S6          | ME368667.006  | %     | 40 - 130% | 98         |
|                             | S7          | ME368667.007  | %     | 40 - 130% | 99         |
|                             | S8          | ME368667.008  | %     | 40 - 130% | 99         |
|                             | S9          | ME368667.009  | %     | 40 - 130% | 96         |
|                             | Duplicate   | ME368667.010  | %     | 40 - 130% | 101        |

#### USEPA 8260B Volatile Organic Compounds in Solids/Soils

#### Method: USEPA 8260 B

| COLI A 02000 Voladio Organic Compodina in Colida/Colia |             |               |       | Mot       | 110d. OOL1 A 0200 E |
|--------------------------------------------------------|-------------|---------------|-------|-----------|---------------------|
| Parameter                                              | Sample Name | Sample Number | Units | Criteria  | Recovery %          |
| Toluene-d8 (surrogate)                                 | <u>S1</u>   | ME368667.001  | %     | 60 - 130% | 87                  |
|                                                        | S2          | ME368667.002  | %     | 60 - 130% | 74                  |
|                                                        | S3          | ME368667.003  | %     | 60 - 130% | 85                  |
|                                                        | S4          | ME368667.004  | %     | 60 - 130% | 73                  |
|                                                        | S5          | ME368667.005  | %     | 60 - 130% | 74                  |
|                                                        | S6          | ME368667.006  | %     | 60 - 130% | 85                  |
|                                                        | S7          | ME368667.007  | %     | 60 - 130% | 74                  |
|                                                        | S8          | ME368667.008  | %     | 60 - 130% | 77                  |
|                                                        | S9          | ME368667.009  | %     | 60 - 130% | 76                  |
|                                                        | Duplicate   | ME368667.010  | %     | 60 - 130% | 76                  |

28/11/2024 Page 5 of 16



# **METHOD BLANKS**

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

8270D.SL.01 SVOCs All in Solids/Soils Method: MA 8270

| Sample Number | Parameter                | Units          | LOR      | Result       |
|---------------|--------------------------|----------------|----------|--------------|
| LB082866.001  | 1-Methylnaphthalene      | mg/kg          | 0.1      | <0.1         |
|               | 2-Methylnaphthalene      | mg/kg          | 0.1      | <0.1         |
|               | 4,4-DDD                  | mg/kg          | 0.5      | <0.5         |
|               | 4,4-DDE                  | mg/kg          | 0.5      | <0.5         |
|               | 4,4-DDT                  | mg/kg          | 0.5      | <0.5         |
|               | Acenaphthene             | mg/kg          | 0.1      | <0.1         |
|               | Acenaphthylene           | mg/kg          | 0.1      | <0.1         |
|               | Aldrin                   | mg/kg          | 0.5      | <0.5         |
|               | alpha-BHC                | mg/kg          | 0.5      | <0.5         |
|               | alpha-Chlordane          | mg/kg          | 0.5      | <0.5         |
|               | gamma-Chlordane          | mg/kg          | 0.5      | <0.5         |
|               | Anthracene               | mg/kg          | 0.1      | <0.1         |
|               | Arochlor 1016            | mg/kg          | 1        | <1.0         |
|               | Arochlor 1221            | mg/kg          | 1        | <1.0         |
|               | Arochlor 1232            | mg/kg          | 1        | <1.0         |
|               | Arochlor 1242            | mg/kg          | 1        | <1.0         |
|               | Arochlor 1248            | mg/kg          | 1        | <1.0         |
|               | Arochlor 1254            | mg/kg          | 1        | <1.0         |
|               | Arochlor 1260            | mg/kg          | 1        | <1.0         |
|               | Arochlor 1262            | mg/kg          | 1        | <1.0         |
|               | Arochlor 1268            | mg/kg          | 1        | <1.0         |
|               | Benzo(a)anthracene       | mg/kg          | 0.1      | <0.1         |
|               | Benzo (a) pyrene         | mg/kg          | 0.1      | <0.1         |
|               | Benzo (b+j) fluoranthene | mg/kg          | 0.1      | <0.1         |
|               | Benzo (ghi) perylene     | mg/kg          | 0.1      | <0.1         |
|               | Benzo (k) fluoranthene   | mg/kg          | 0.1      | <0.1         |
|               | beta-BHC                 | mg/kg          | 0.5      | <0.5         |
|               | delta-BHC                | mg/kg          | 0.5      | <0.5         |
|               | Dibenz (ah) anthracene   | mg/kg          | 0.1      | <0.1         |
|               | Dieldrin                 | mg/kg          | 0.5      | <0.5         |
|               | Endosulfan 1             | mg/kg          | 0.5      | <0.5         |
|               | Endosulfan 2             | mg/kg          | 0.5      | <0.5         |
|               | Endosulfan Sulphate      | mg/kg          | 0.5      | <0.5<br><0.5 |
|               | Endrin                   | mg/kg          | 0.5      |              |
|               | Endrin Aldehyde          | mg/kg          | 0.5      | <0.5<br><0.1 |
|               | Fluoranthene Fluorene    | mg/kg          | 0.1      | <0.1         |
|               | gamma-BHC                | mg/kg          | 0.5      | <0.1         |
|               | Heptachlor               | mg/kg          | 0.5      | <0.5         |
|               | Heptachlor Epoxide       | mg/kg<br>mg/kg | 0.5      | <0.5         |
|               | Indeno (1,2,3-cd) pyrene | mg/kg          | 0.1      | <0.1         |
|               | Isodrin                  | mg/kg          | 0.5      | <0.5         |
|               | Methoxychlor             | mg/kg          | 0.5      | <0.5         |
|               | Naphthalene              | mg/kg          | 0.1      | <0.1         |
|               | Phenanthrene             | mg/kg          | 0.5      | <0.5         |
|               | Pyrene                   | mg/kg          | 0.5      | <0.5         |
|               | Total OC Pesticides      | mg/kg          | 1        | <1.0         |
|               | Total PCBs               | mg/kg          | 1        | <1.0         |
|               | rotari obo               | mg/kg          | <u> </u> | >1.0         |

TRH in soil MA-30.SL.01 Method: MA30

| Sample Number | Parameter                         | Units | LOR | Result |
|---------------|-----------------------------------|-------|-----|--------|
| LB082867.001  | TRH C6-C9 (P&T)                   | mg/kg | 10  | <10    |
|               | TRH C10-C14                       | mg/kg | 10  | <10    |
|               | TRH >C10-C16                      | mg/kg | 10  | <10    |
|               | TRH>C10-C16 less naphthalene (F2) | mg/kg | 10  | <10    |
|               | TRH >C16-C34 (F3)                 | mg/kg | 20  | <20    |
|               | TRH C15-C28                       | mg/kg | 20  | <20    |
|               | TRH C29-C36                       | mg/kg | 20  | <20    |
|               | C6-C10 (P&T) less BTEX (F1)       | mg/kg | 10  | <10    |
|               | Total TRH C10-C36                 | mg/kg | 20  | <20    |
|               | TRH >C34-C40 (F4)                 | mg/kg | 20  | <20    |

28/11/2024 Page 6 of 16





# **METHOD BLANKS**

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### TRH in soil MA-30.SL.01 (continued)

#### Method: MA30

| Sample Number | Parameter            | Units | LOR | Result |
|---------------|----------------------|-------|-----|--------|
| LB082867.001  | TRH C6-C10 (P&T)     | mg/kg | 10  | <10    |
|               | Total TRH C6-C36     | mg/kg | 20  | <20    |
|               | Total TRH C6-C40 (F) | mg/kg | 20  | <20    |
|               | TRH >C10-C40 (F)     | mg/kg | 20  | <20    |

#### USEPA 8260B Volatile Organic Compounds in Solids/Soils

#### Method: USEPA 8260 B

| Sample Number |                     | Parameter              | Units | LOR | Result |
|---------------|---------------------|------------------------|-------|-----|--------|
| LB082871.001  |                     | m&p-Xylenes            | mg/kg | 0.1 | <0.1   |
|               | Monocyclic Aromatic | Benzene                | mg/kg | 0.1 | <0.1   |
|               | Hydrocarbons        | Toluene                | mg/kg | 0.1 | <0.1   |
|               |                     | Ethylbenzene           | mg/kg | 0.1 | <0.1   |
|               |                     | o-Xylenes              | mg/kg | 0.1 | <0.1   |
|               | Polycyclic Aromatic | Naphthalene (VOC)      | mg/kg | 0.1 | <0.1   |
|               | Surrogates          | Toluene-d8 (surrogate) | %     | -   | 76     |

#### Volatile Petroleum Hydrocarbons in soil

#### Method: MA30-VPH

| Sample Number | Parameter                       | Units | LOR | Result |
|---------------|---------------------------------|-------|-----|--------|
| LB082871.001  | TRH C6-C9 (P&T)                 | mg/kg | 10  | <10    |
|               | TRH C6-C10 (P&T)                | mg/kg | 10  | <10    |
|               | TRH C6-C10 (P&T) less RTEX (F1) | ma/ka | 10  | <10    |

28/11/2024 Page 7 of 16



# **DUPLICATES**

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

8270D.SL.01 SVOCs All in Solids/Solis Method: MA 8270

| Original     | Duplicate    | Parameter                        | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|----------------------------------|-------|-----|----------|-----------|------------|-------|
| ME368667.003 | LB082866.017 | 1-Methylnaphthalene              | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | 2-Methylnaphthalene              | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | 4,4-DDD                          | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | 4,4-DDE                          | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | 4,4-DDT                          | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Acenaphthene                     | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Acenaphthylene                   | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Aldrin                           | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | alpha-BHC                        | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | alpha-Chlordane                  | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | gamma-Chlordane                  | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Anthracene                       | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Arochlor 1016                    | mg/kg | 1   | <1.0     | <1.0      | 200        | 0     |
|              |              | Arochlor 1221                    | mg/kg | 1   | <1.0     | <1.0      | 200        | 0     |
|              |              | Arochlor 1232                    | mg/kg | 1   | <1.0     | <1.0      | 200        | 0     |
|              |              | Arochlor 1242                    | mg/kg | 1   | <1.0     | <1.0      | 200        | 0     |
|              |              | Arochlor 1248                    | mg/kg | 1   | <1.0     | <1.0      | 200        | 0     |
|              |              | Arochlor 1254                    | mg/kg | 1   | <1.0     | <1.0      | 200        | 0     |
|              |              | Arochlor 1260                    | mg/kg | 1   | <1.0     | <1.0      | 200        | 0     |
|              |              | Arochlor 1262                    | mg/kg | 1   | <1.0     | <1.0      | 200        | 0     |
|              |              | Arochlor 1268                    | mg/kg | 1   | <1.0     | <1.0      | 200        | 0     |
|              |              | Benzo(a)anthracene               | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Benzo (a) pyrene                 | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Benzo (b+j) fluoranthene         | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Benzo (ghi) perylene             | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Benzo (k) fluoranthene           | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | beta-BHC                         | mg/kg | 0.1 | <0.5     | <0.5      | 200        | 0     |
|              |              | delta-BHC                        |       | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              |                                  | mg/kg | 0.5 | <0.1     | <0.1      | 200        | 0     |
|              |              | Dibenz (ah) anthracene Dieldrin  | mg/kg | 0.1 | <0.5     | <0.5      | 200        | 0     |
|              |              |                                  | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Endosulfan 1 Endosulfan 2        | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              |                                  | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Endosulfan Sulphate Endrin       | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              |                                  | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Endrin Aldehyde                  | mg/kg |     |          |           |            | 0     |
|              |              | Fluoranthene                     | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Fluorene                         | mg/kg | 0.1 | <0.1     | <0.1      | 200        |       |
|              |              | gamma-BHC                        | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Heptachlor                       | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Heptachlor Epoxide               | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Indeno (1,2,3-cd) pyrene         | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Isodrin                          | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Methoxychlor                     | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Naphthalene                      | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Phenanthrene                     | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Pyrene                           | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Total OC Pesticides              | mg/kg | 1   | <1.0     | <1.0      | 200        | 0     |
|              |              | Total PCBs                       | mg/kg | 1   | <1.0     | <1.0      | 200        | 0     |
|              |              | 2,4,6-Tribromophenol (surrogate) | mg/kg | -   | 1        | 1         | 30         | 4     |
|              |              | Fluorobiphenyl (surrogate)       | mg/kg | -   | 1        | 1         | 30         | 2     |
|              |              | Fluorophenol (surrogate)         | mg/kg | -   | 1        | 1         | 30         | 1     |
|              |              | Nitrobenzene-D5 (surrogate)      | mg/kg | -   | 1        | 1         | 30         | 4     |
|              |              | p-Terphenyl-D14 (surrogate)      | mg/kg | -   | 1        | 1         | 30         | 1     |
|              |              | Phenol-D6 (surrogate)            | mg/kg | -   | 1        | 1         | 30         | 1     |
| ME368691.001 | LB082866.004 | 1-Methylnaphthalene              | mg/kg | 0.1 | <1       | <1        | 200        | 0     |
|              |              | 2-Methylnaphthalene              | mg/kg | 0.1 | <1       | <1        | 42         | 0     |
|              |              | Acenaphthene                     | mg/kg | 0.1 | <1       | <1        | 200        | 0     |
|              |              | Acenaphthylene                   | mg/kg | 0.1 | <1       | <1        | 200        | 0     |
|              |              | Anthracene                       | mg/kg | 0.1 | <1       | <1        | 200        | 0     |
|              |              | Benzo(a)anthracene               | mg/kg | 0.1 | <1       | <1        | 200        | 0     |
|              |              |                                  |       |     |          |           |            | 0     |

28/11/2024 Page 8 of 16



# **DUPLICATES**

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

#### 8270D.SL.01 SVOCs All in Solids/Soils (continued)

#### Method: MA 8270

| Original     | Duplicate    | Parameter                        | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|----------------------------------|-------|-----|----------|-----------|------------|-------|
| ME368691.001 | LB082866.004 | Benzo (b+j) fluoranthene         | mg/kg | 0.1 | <1       | <1        | 200        | 0     |
|              |              | Benzo (ghi) perylene             | mg/kg | 0.1 | <1       | <1        | 200        | 0     |
|              |              | Benzo (k) fluoranthene           | mg/kg | 0.1 | <1       | <1        | 200        | 0     |
|              |              | Dibenz (ah) anthracene           | mg/kg | 0.1 | <1       | <1        | 200        | 0     |
|              |              | Fluoranthene                     | mg/kg | 0.1 | <1       | <1        | 200        | 0     |
|              |              | Fluorene                         | mg/kg | 0.1 | <1       | <1        | 200        | 0     |
|              |              | Indeno (1,2,3-cd) pyrene         | mg/kg | 0.1 | <1       | <1        | 200        | 0     |
|              |              | Naphthalene                      | mg/kg | 0.1 | <1       | <1        | 200        | 0     |
|              |              | Phenanthrene                     | mg/kg | 0.5 | <5       | <5        | 200        | 0     |
|              |              | Pyrene                           | mg/kg | 0.5 | <5       | <5        | 200        | 0     |
|              |              | 2,4,6-Tribromophenol (surrogate) | mg/kg | -   | 1        | 1         | 30         | 15    |
|              |              | Fluorobiphenyl (surrogate)       | mg/kg | -   | <5       | <5        | 30         | 0     |
|              |              | Fluorophenol (surrogate)         | mg/kg | -   | 2        | 2         | 30         | 1     |
|              |              | Nitrobenzene-D5 (surrogate)      | mg/kg | -   | <5       | <5        | 30         | 0     |
|              |              | p-Terphenyl-D14 (surrogate)      | mg/kg | -   | 1        | 1         | 30         | 7     |
|              |              | Phenol-D6 (surrogate)            | mg/kg | -   | 0        | 0         | 30         | 3     |

#### Metals/Elements in Solids

#### Method: MA1400\_1

| Original     | Duplicate    | Parameter | Units | LOR  | Original     | Duplicate     | Criteria % | RPD % |
|--------------|--------------|-----------|-------|------|--------------|---------------|------------|-------|
| ME368667.001 | LB082951.004 | Arsenic   | mg/kg | 2    | 10           | 8             | 51         | 23    |
|              |              | Cadmium   | mg/kg | 0.2  | <0.2         | <0.2          | 200        | 0     |
|              |              | Chromium  | mg/kg | 2    | 13           | 11            | 46         | 17    |
|              |              | Copper    | mg/kg | 2    | 9            | 9             | 52         | 4     |
|              |              | Lead      | mg/kg | 2    | 97           | 87            | 32         | 11    |
|              |              | Mercury   | mg/kg | 0.05 | <0.05        | <0.05         | 148        | 0     |
|              |              | Nickel    | mg/kg | 2    | 6            | 5             | 65         | 16    |
|              |              | Zinc      | mg/kg | 2    | 64           | 65            | 33         | 2     |
| ME368736.002 | LB082951.017 | Arsenic   | mg/kg | 2    | 4.028793282  | 4.4551727816  | 77         | 10    |
|              |              | Cadmium   | mg/kg | 0.2  | 0.0372961983 | 30.0413064524 | 200        | 0     |
|              |              | Chromium  | mg/kg | 2    | 11.377498630 | 711.050637444 | 48         | 3     |
|              |              | Copper    | mg/kg | 2    | 5.0658410786 | 5.6005269582  | 68         | 10    |
|              |              | Lead      | mg/kg | 2    | 17.976742355 | 20.639023615  | 2 40       | 14    |
|              |              | Mercury   | mg/kg | 0.05 | 0.0311039699 | 0.0297092436  | 194        | 0     |
|              |              | Nickel    | mg/kg | 2    | 3.5238496524 | 3.4776987812  | 87         | 1     |
|              |              | Zinc      | mg/kg | 2    | 23.737694827 | 20.445033319  | 39         | 15    |

#### Moisture Content

### Method: ME-(AU)-[ENV]AN002

| Original     | Duplicate    | Parameter  | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|------------|-------|-----|----------|-----------|------------|-------|
| ME368667.001 | LB082872.002 | % Moisture | %w/w  | 1   | 13.6     | 11.7      | 38         | 15    |

# TRH in soil MA-30.SL.01

### Method: MA30

| Original     | Duplicate    | Parameter                         | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|-----------------------------------|-------|-----|----------|-----------|------------|-------|
| ME368667.003 | LB082867.017 | TRH C6-C9 (P&T)                   | mg/kg | 10  | <10      | <10       | 200        | 0     |
|              |              | TRH C10-C14                       | mg/kg | 10  | <10      | <10       | 200        | 0     |
|              |              | TRH >C10-C16                      | mg/kg | 10  | <10      | <10       | 200        | 0     |
|              |              | TRH>C10-C16 less naphthalene (F2) | mg/kg | 10  | <10      | <10       | 200        | 0     |
|              |              | TRH >C16-C34 (F3)                 | mg/kg | 20  | 98       | 110       | 49         | 15    |
|              |              | TRH C15-C28                       | mg/kg | 20  | 52       | 58        | 67         | 12    |
|              |              | TRH C29-C36                       | mg/kg | 20  | 54       | 64        | 64         | 17    |
|              |              | C6-C10 (P&T) less BTEX (F1)       | mg/kg | 10  | <10      | <10       | 200        | 0     |
|              |              | Total TRH C10-C36                 | mg/kg | 20  | 110      | 120       | 48         | 14    |
|              |              | TRH >C34-C40 (F4)                 | mg/kg | 20  | <20      | 21        | 131        | 6     |
|              |              | TRH C6-C10 (P&T)                  | mg/kg | 10  | <10      | <10       | 200        | 0     |
|              |              | Total TRH C6-C36                  | mg/kg | 20  | 110      | 120       | 48         | 14    |
|              |              | Total TRH C6-C40 (F)              | mg/kg | 20  | 98       | 140       | 47         | 31    |
|              |              | TRH >C10-C40 (F)                  | mg/kg | 20  | 98       | 140       | 47         | 31    |
| ME368691.001 | LB082867.004 | TRH C6-C9 (P&T)                   | mg/kg | 10  | 16       | 16        | 94         | 0     |
|              |              | TRH C10-C14                       | mg/kg | 10  | 3200     | 4000      | 30         | 23    |
|              |              | TRH >C10-C16                      | mg/kg | 10  | 5800     | 7600      | 30         | 27    |
|              |              | TRH>C10-C16 less naphthalene (F2) | mg/kg | 10  | 5800     | 7600      | 30         | 27    |

28/11/2024 Page 9 of 16



# DUPLICATES

ME368667 R0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

#### TRH in soil MA-30.SL.01 (continued)

#### Method: MA30

| Original     | Duplicate    | Parameter                   | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|-----------------------------|-------|-----|----------|-----------|------------|-------|
| ME368691.001 | LB082867.004 | TRH >C16-C34 (F3)           | mg/kg | 20  | 9300     | 12623.402 | 30         | 31 ②  |
|              |              | TRH C15-C28                 | mg/kg | 20  | 10000    | 14000     | 30         | 30 †  |
|              |              | TRH C29-C36                 | mg/kg | 20  | 900      | 1100      | 32         | 19    |
|              |              | C6-C10 (P&T) less BTEX (F1) | mg/kg | 10  | 89       | 89        | 41         | 0     |
|              |              | Total TRH C10-C36           | mg/kg | 20  | 15000    | 19000     | 30         | 28    |
|              |              | TRH >C34-C40 (F4)           | mg/kg | 20  | 750      | 790       | 33         | 5     |
|              |              | TRH C6-C10 (P&T)            | mg/kg | 10  | 90       | 90        | 41         | 0     |
|              |              | Total TRH C6-C36            | mg/kg | 20  | 15000    | 19000     | 30         | 28    |
|              |              | Total TRH C6-C40 (F)        | mg/kg | 20  | 16000    | 21000     | 30         | 28    |
|              |              | TRH >C10-C40 (F)            | mg/kg | 20  | 16000    | 21000     | 30         | 28    |

#### USEPA 8260B Volatile Organic Compounds in Solids/Solls

#### Method: USEPA 8260 B

| Original     | Duplicate    |            | Parameter              | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|------------|------------------------|-------|-----|----------|-----------|------------|-------|
| ME368667.001 | LB082871.004 |            | m&p-Xylenes            | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Total BTEX             | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Monocyclic | Benzene                | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Aromatic   | Toluene                | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Ethylbenzene           | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | o-Xylenes              | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Polycyclic | Naphthalene (VOC)      | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Surrogates | Toluene-d8 (surrogate) | mg/kg | -   | 17       | 15        | 30         | 14    |

#### Volatile Petroleum Hydrocarbons in soil

#### Method: MA30-VPH

| Original     | Duplicate    | Parameter                       | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|---------------------------------|-------|-----|----------|-----------|------------|-------|
| ME368667.001 | LB082871.004 | TRH C6-C9 (P&T)                 | mg/kg | 10  | <10      | <10       | 200        | 0     |
|              |              | TRH C6-C10 (P&T)                | mg/kg | 10  | <10      | <10       | 200        | 0     |
|              |              | TRH C6-C10 (P&T) less BTEX (F1) | mg/kg | 10  | <10      | <10       | 200        | 0     |

28/11/2024 Page 10 of 16





# LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

| 8270D.SL.01 SVOCs All in Solids/Soils | Method: MA 8270 |
|---------------------------------------|-----------------|

| Sample Number | Parameter                        | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|----------------------------------|-------|-----|--------|----------|------------|------------|
| LB082866.002  | 4,4-DDT                          | mg/kg | 0.5 | 13     | 12.5     | 60 - 140   | 105        |
|               | Acenaphthene                     | mg/kg | 0.1 | 2.5    | 2.5      | 60 - 140   | 98         |
|               | Aldrin                           | mg/kg | 0.5 | 4.5    | 5        | 60 - 140   | 91         |
|               | Dieldrin                         | mg/kg | 0.5 | 14     | 12.5     | 60 - 140   | 109        |
|               | Endrin                           | mg/kg | 0.5 | 3.5    | 12.5     | 60 - 140   | 28†        |
|               | gamma-BHC                        | mg/kg | 0.5 | 4.0    | 5        | 60 - 140   | 79         |
|               | Heptachlor                       | mg/kg | 0.5 | 4.8    | 5        | 60 - 140   | 96         |
|               | Pyrene                           | mg/kg | 0.5 | 2.0    | 2.5      | 60 - 140   | 81         |
|               | 2,4,6-Tribromophenol (surrogate) | mg/kg |     | 1      | 1        | 60 - 140   | 72         |
|               | Fluorobiphenyl (surrogate)       | mg/kg | -   | 1      | 1        | 60 - 140   | 79         |
|               | Fluorophenol (surrogate)         | mg/kg | -   | 1      | 1        | 60 - 140   | 138        |
|               | Nitrobenzene-D5 (surrogate)      | mg/kg | -   | 1      | 1        | 60 - 140   | 84         |
|               | p-Terphenyl-D14 (surrogate)      | mg/kg | -   | 1      | 1        | 60 - 140   | 74         |
|               | Phenol-D6 (surrogate)            | mg/kg | -   | 1      | 1        | 60 - 140   | 93         |

#### Metals/Elements in Solids

#### Method: MA1400\_1

| Sample Number | Parameter | Units | LOR  | Result | Expected | Criteria % | Recovery % |
|---------------|-----------|-------|------|--------|----------|------------|------------|
| LB082951.002  | Arsenic   | mg/kg | 2    | 9      | 10       | 80 - 120   | 93         |
|               | Cadmium   | mg/kg | 0.2  | 10     | 10       | 80 - 120   | 105        |
|               | Chromium  | mg/kg | 2    | 11     | 10       | 80 - 120   | 108        |
|               | Copper    | mg/kg | 2    | 11     | 10       | 80 - 120   | 109        |
|               | Lead      | mg/kg | 2    | 12     | 10       | 80 - 120   | 117        |
|               | Mercury   | mg/kg | 0.05 | 1.0    | 1        | 80 - 120   | 105        |
|               | Nickel    | mg/kg | 2    | 10     | 10       | 80 - 120   | 100        |
|               | Zinc      | ma/ka | 2    | 10     | 10       | 80 - 120   | 99         |

#### TRH in soil MA-30.SL.01

#### Method: MA30

| Sample Number | Parameter         | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|-------------------|-------|-----|--------|----------|------------|------------|
| LB082867.002  | Total TRH C10-C36 | mg/kg | 20  | 430    | 500      | 80 - 120   | 86         |

#### USEPA 8260B Volatile Organic Compounds in Solids/Soils

### Method: USEPA 8260 B

| Sample Number |            | Parameter    | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|------------|--------------|-------|-----|--------|----------|------------|------------|
| LB082871.002  | Monocyclic | Benzene      | mg/kg | 0.1 | 5.3    | 5        | 60 - 140   | 107        |
|               | Aromatic   | Toluene      | mg/kg | 0.1 | 4.9    | 5        | 60 - 140   | 99         |
|               |            | Ethylbenzene | mg/kg | 0.1 | 5.0    | 5        | 60 - 140   | 100        |

#### Volatile Petroleum Hydrocarbons in soil

#### Method: MA30-VPH

| Sample Number | Parameter        | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|------------------|-------|-----|--------|----------|------------|------------|
| LB082871.002  | TRH C6-C9 (P&T)  | mg/kg | 10  | 30     | 30       | 60 - 140   | 101        |
|               | TPH C6.C10 (P&T) | ma/ka | 10  | 32     | 35       | 60 - 140   | 02         |

28/11/2024 Page 11 of 16

Method: MA 8270



8270D.SL.01 SVOCs All in Solids/Soils

# **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| 02/UD.SL.U1 SV   | OCS All In Solids/So  | 118                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |               |          | IVIE    | MINOG: MIA 8270       |
|------------------|-----------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|---------------|----------|---------|-----------------------|
| QC Sample        | Sample Number         |                          | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units                                 | LOR  | Result        | Original | Spike   | Recovery%             |
| ME368691.001     | LB082866.005          |                          | 1-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg                                 | 0.1  | <1.0          | <1       | -       | -                     |
|                  |                       |                          | 2-Methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/kg                                 | 0.1  | <1.0          | <1       | -       | -                     |
|                  |                       |                          | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/kg                                 | 0.1  | 3.3           | <1       | 2.5     | 132                   |
|                  |                       |                          | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/kg                                 | 0.1  | <1.0          | <1       | -       | -                     |
|                  |                       |                          | Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg                                 | 0.1  | <1.0          | <1       | -       | -                     |
|                  |                       |                          | Benzo(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg                                 | 0.1  | <1.0          | <1       | -       | -                     |
|                  |                       |                          | Benzo (a) pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg                                 | 0.1  | <1.0          | <1       | -       | -                     |
|                  |                       |                          | Benzo (b+j) fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg                                 | 0.1  | <1.0          | <1       | -       | -                     |
|                  |                       |                          | Benzo (ghi) perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                 | 0.1  | <1.0          | <1       | -       | -                     |
|                  |                       |                          | Benzo (k) fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                 | 0.1  | <1.0          | <1       | -       | _                     |
|                  |                       |                          | Dibenz (ah) anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                 | 0.1  | <1.0          | <1       | _       | _                     |
|                  |                       |                          | Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/kg                                 | 0.1  | <1.0          | <1       |         |                       |
|                  |                       |                          | Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · · | 0.1  | <1.0          | <1       |         |                       |
|                  |                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg                                 |      |               |          |         |                       |
|                  |                       |                          | Indeno (1,2,3-cd) pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg                                 | 0.1  | <1.0          | <1       | -       |                       |
|                  |                       |                          | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                 | 0.1  | <1.0          | <1       | -       | -                     |
|                  |                       |                          | Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/kg                                 | 0.5  | <5.0          | <5       | -       | -                     |
|                  |                       |                          | Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                 | 0.5  | <5.0          | <5       | 2.5     | 111                   |
|                  |                       |                          | 2,4,6-Tribromophenol (surrogate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg                                 | -    | 1             | 1        | -       | 125                   |
|                  |                       |                          | Fluorobiphenyl (surrogate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg                                 | -    | <b>&lt;</b> 5 | <5       | -       | 79                    |
|                  |                       |                          | Fluorophenol (surrogate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg                                 | -    | 2             | 2        | -       | 158                   |
|                  |                       |                          | Nitrobenzene-D5 (surrogate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                 | -    | <b>&lt;</b> 5 | <5       | -       | 64                    |
|                  |                       |                          | p-Terphenyl-D14 (surrogate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                 | -    | 1             | 1        | -       | 107                   |
|                  |                       |                          | Phenol-D6 (surrogate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg                                 | -    | 0             | 0        | -       | 35                    |
| Metals/Elements  | in Solids             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |               |          | Meth    | nod: MA1400_          |
|                  |                       |                          | Danish at a second | 11-24-                                | LOD  | D lé          | 0        |         |                       |
| QC Sample        | Sample Number         |                          | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units                                 | LOR  | Result        | Original | Spike   | Recovery <sup>9</sup> |
| ME368667.001     | LB082951.005          |                          | Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                 | 2    | 18            | 10       | 10      | 80                    |
|                  |                       |                          | Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                 | 0.2  | 8.0           | <0.2     | 10      | 80                    |
|                  |                       |                          | Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg                                 | 2    | 21            | 13       | 10      | 78                    |
|                  |                       |                          | Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                 | 2    | 17            | 9        | 10      | 80                    |
|                  |                       |                          | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                 | 2    | 110           | 97       | 10      | 113                   |
|                  |                       |                          | Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                 | 0.05 | 0.79          | <0.05    | 1       | 75                    |
|                  |                       |                          | Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                 | 2    | 13            | 6        | 10      | 72                    |
|                  |                       |                          | Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                 | 2    | 74            | 64       | 10      | 101                   |
| TRH in soil MA-3 | 30.SL.01              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |               |          |         | Method: MA3           |
| QC Sample        |                       |                          | Doromotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units                                 | LOR  | Result        | Original | Spike   |                       |
| •                | Sample Number         |                          | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |      |               | Original | - эріке | Recovery              |
| ME368691.001     | LB082867.005          |                          | TRH C6-C9 (P&T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg                                 | 10   | 16            | 16       |         |                       |
|                  |                       |                          | TRH C10-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                 | 10   | 3500          | 3200     | -       | -                     |
|                  |                       |                          | TRH >C10-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/kg                                 | 10   | 6300          | 5800     | -       | -                     |
|                  |                       |                          | TRH>C10-C16 less naphthalene (F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                 | 10   | 6300          | 5800     | -       | -                     |
|                  |                       |                          | TRH >C16-C34 (F3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                 | 20   | 9000          | 9300     | -       | -                     |
|                  |                       |                          | TRH C15-C28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                 | 20   | 10000         | 10000    | -       | -                     |
|                  |                       |                          | TRH C29-C36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                 | 20   | 950           | 900      | -       | -                     |
|                  |                       |                          | C6-C10 (P&T) less BTEX (F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                 | 10   | 89            | 89       | -       | -                     |
|                  |                       |                          | Total TRH C10-C36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                 | 20   | 15000         | 15000    | 500     | 63 ⑤                  |
|                  |                       |                          | TRH >C34-C40 (F4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg                                 | 20   | 810           | 750      | -       | -                     |
|                  |                       |                          | TRH C6-C10 (P&T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg                                 | 10   | 90            | 90       | -       | -                     |
|                  |                       |                          | Total TRH C6-C36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg                                 | 20   | 15000         | 15000    | -       | -                     |
|                  |                       |                          | Total TRH C6-C40 (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                 | 20   | 16000         | 16000    | -       | -                     |
|                  |                       |                          | TRH >C10-C40 (F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg                                 | 20   | 16000         | 16000    | -       | -                     |
| HEEDA POPOD V    | olotilo Organia Carre | nounde in Collde         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | -    |               |          |         | USEPA 8260            |
|                  | olatile Organic Com   | •                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |               |          |         |                       |
| QC Sample        | Sample Number         |                          | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Units                                 | LOR  | Result        | Original | Spike   | Recovery              |
| ME368667.001     | LB082871.005          |                          | m&p-Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                 | 0.1  | <0.1          | <0.1     | -       | -                     |
|                  |                       |                          | Total BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg                                 | 0.5  | 15            | <0.5     | -       | -                     |
|                  |                       | Monocyclic               | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                 | 0.1  | 5.3           | <0.1     | 5       | 105                   |
|                  |                       | Aromatic                 | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                 | 0.1  | 4.9           | <0.1     | 5       | 97                    |
|                  |                       |                          | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/kg                                 | 0.1  | 4.9           | <0.1     | 5       | 98                    |
|                  |                       |                          | a Vidanaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/kg                                 | 0.1  | <0.1          | <0.1     | -       | -                     |
|                  |                       |                          | o-Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ilig/kg                               | 0.1  |               |          |         |                       |
|                  |                       | Polycyclic               | Naphthalene (VOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · · | 0.1  | <0.1          | <0.1     | -       | -                     |
|                  |                       | Polycyclic<br>Surrogates | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg<br>µg/L                         |      |               |          |         |                       |

28/11/2024 Page 12 of 16





Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Volatile Petroleum Hydrocarbons in soil

| Met |  |  |  |
|-----|--|--|--|
|     |  |  |  |

| QC Sample    | Sample Number | Parameter                       | Units | LOR | Result | Original | Spike | Recovery% |
|--------------|---------------|---------------------------------|-------|-----|--------|----------|-------|-----------|
| ME368667.001 | LB082871.005  | TRH C6-C9 (P&T)                 | mg/kg | 10  | 33     | <10      | 30    | 109       |
|              |               | TRH C6-C10 (P&T)                | mg/kg | 10  | 36     | <10      | 35    | 104       |
|              |               | TRH C6-C10 (P&T) less BTEX (F1) | mg/kg | 10  | 21     | <10      | -     | -         |

28/11/2024 Page 13 of 16



### MATRIX SPIKE DUPLICATES



Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### 8270D.SL.01 SVOCs All in Solids/Soils

Method: MA 8270

| QC Sample    | Sample Number | Parameter                        | Units | LOR | Duplicate     |
|--------------|---------------|----------------------------------|-------|-----|---------------|
| ME368691.001 | LB082866.006  | 1-Methylnaphthalene              | mg/kg | 0.1 | <1.0          |
|              |               | 2-Methylnaphthalene              | mg/kg | 0.1 | <1.0          |
|              |               | Acenaphthene                     | mg/kg | 0.1 | 3.4           |
|              |               | Acenaphthylene                   | mg/kg | 0.1 | <1.0          |
|              |               | Anthracene                       | mg/kg | 0.1 | <1.0          |
|              |               | Benzo(a)anthracene               | mg/kg | 0.1 | <1.0          |
|              |               | Benzo (a) pyrene                 | mg/kg | 0.1 | <1.0          |
|              |               | Benzo (b+j) fluoranthene         | mg/kg | 0.1 | <1.0          |
|              |               | Benzo (ghi) perylene             | mg/kg | 0.1 | <1.0          |
|              |               | Benzo (k) fluoranthene           | mg/kg | 0.1 | <1.0          |
|              |               | Dibenz (ah) anthracene           | mg/kg | 0.1 | <1.0          |
|              |               | Fluoranthene                     | mg/kg | 0.1 | <1.0          |
|              |               | Fluorene                         | mg/kg | 0.1 | <1.0          |
|              |               | Indeno (1,2,3-cd) pyrene         | mg/kg | 0.1 | <1.0          |
|              |               | Naphthalene                      | mg/kg | 0.1 | <1.0          |
|              |               | Phenanthrene                     | mg/kg | 0.5 | <5.0          |
|              |               | Pyrene                           | mg/kg | 0.5 | <5.0          |
|              |               | 2,4,6-Tribromophenol (surrogate) | mg/kg | -   | 1             |
|              |               | Fluorobiphenyl (surrogate)       | mg/kg | -   | <b>&lt;</b> 5 |
|              |               | Fluorophenol (surrogate)         | mg/kg | -   | 2             |
|              |               | Nitrobenzene-D5 (surrogate)      | mg/kg | -   | <b>&lt;</b> 5 |
|              |               | p-Terphenyl-D14 (surrogate)      | mg/kg | -   | 1             |
|              |               | Phenol-D6 (surrogate)            | mg/kg | -   | 0             |

### Metals/Elements in Solids

| QC Sample    | Sample Number | Parameter | Units | LOR  | Duplicate |
|--------------|---------------|-----------|-------|------|-----------|
| ME368667.001 | LB082951.006  | Arsenic   | mg/kg | 2    | 18        |
|              |               | Cadmium   | mg/kg | 0.2  | 7.8       |
|              |               | Chromium  | mg/kg | 2    | 21        |
|              |               | Copper    | mg/kg | 2    | 17        |
|              |               | Lead      | mg/kg | 2    | 110       |
|              |               | Mercury   | mg/kg | 0.05 | 0.80      |
|              |               | Nickel    | mg/kg | 2    | 13        |
|              |               | Zinc      | mg/kg | 2    | 74        |

### TRH in soil MA-30.SL.01

| QC Sample    | Sample Number | Parameter                         | Units | LOR | Duplicate |
|--------------|---------------|-----------------------------------|-------|-----|-----------|
| ME368691.001 | LB082867.006  | TRH C6-C9 (P&T)                   | mg/kg | 10  | 16        |
|              |               | TRH C10-C14                       | mg/kg | 10  | 3300      |
|              |               | TRH >C10-C16                      | mg/kg | 10  | 6200      |
|              |               | TRH>C10-C16 less naphthalene (F2) | mg/kg | 10  | 6200      |
|              |               | TRH >C16-C34 (F3)                 | mg/kg | 20  | 9700      |
|              |               | TRH C15-C28                       | mg/kg | 20  | 11000     |
|              | TRH C2        | TRH C29-C36                       | mg/kg | 20  | 970       |
|              |               | C6-C10 (P&T) less BTEX (F1)       | mg/kg | 10  | 89        |
|              |               | Total TRH C10-C36                 | mg/kg | 20  | 15000     |
|              |               | TRH >C34-C40 (F4)                 | mg/kg | 20  | 840       |
|              |               | TRH C6-C10 (P&T)                  | mg/kg | 10  | 90        |
|              |               | Total TRH C6-C36                  | mg/kg | 20  | 15000     |
|              |               | Total TRH C6-C40 (F)              | mg/kg | 20  | 17000     |
|              |               | TRH >C10-C40 (F)                  | mg/kg | 20  | 17000     |

### USEPA 8260B Volatile Organic Compounds in Solids/Soils

| QC Sample | Sample Number | Parameter | Units | LOR |
|-----------|---------------|-----------|-------|-----|

Method: MA1400\_1

Method: MA30

Method: USEPA 8260 B

Page 14 of 16

28/11/2024



### **MATRIX SPIKE DUPLICATES**

ME368667 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

### USEPA 8260B Volatile Organic Compounds in Solids/Soils (continued)

| QC Sample    | Sample Number |            | Parameter              | Units | LOR | Duplicate |
|--------------|---------------|------------|------------------------|-------|-----|-----------|
| ME368667.001 | LB082871.006  |            | m&p-Xylenes            | mg/kg | 0.1 | <0.1      |
|              |               |            | Total BTEX             | mg/kg | 0.5 | 15        |
|              |               | Monocyclic | Benzene                | mg/kg | 0.1 | 5.3       |
|              |               | Aromatic   | Toluene                | mg/kg | 0.1 | 4.9       |
|              |               |            | Ethylbenzene           | mg/kg | 0.1 | 5.0       |
|              |               |            | o-Xylenes              | mg/kg | 0.1 | <0.1      |
|              |               | Polycyclic | Naphthalene (VOC)      | mg/kg | 0.1 | <0.1      |
|              |               | Surrogates | Toluene-d8 (surrogate) | μg/L  | -   | 18        |

#### Volatile Petroleum Hydrocarbons in soil

| QC Sample    | Sample Number | Parameter                       | Units | LOR | Duplicate |
|--------------|---------------|---------------------------------|-------|-----|-----------|
| ME368667.001 | LB082871.006  | TRH C6-C9 (P&T)                 | mg/kg | 10  | 32        |
|              |               | TRH C6-C10 (P&T)                | mg/kg | 10  | 36        |
|              |               | TRH C6-C10 (P&T) less BTEX (F1) | ma/ka | 10  | 21        |

Method: USEPA 8260 B

Method: MA30-VPH

28/11/2024 Page 15 of 16





Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: <a href="https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf">https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf</a>

- \* NATA accreditation does not cover the performance of this service.
- \*\* Indicative data, theoretical holding time exceeded.
- \*\*\* Indicates that both \* and \*\* apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① Majority of surrogate recoveries are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- LOR was raised due to high conductivity of the sample (required dilution).
- (f) Majority of spike recoveries are within acceptance criteria.
- † Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <a href="www.sgs.com/en/Terms-and-Conditions.aspx">www.sgs.com/en/Terms-and-Conditions.aspx</a>.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

28/11/2024 Page 16 of 16





### **SAMPLE RECEIPT ADVICE**

CLIENT DETAILS

Address

Facsimile

Email

LABORATORY DETAILS

Contact Nick Caltabiano

Client NEO CONSULTING PTY LTD

PO BOX 279 RIVERSTONE NSW 2765 Manager Laboratory Adam Atkinson SGS Melbourne EH&S

10/585 Blackburn Road

Notting Hill Victoria 3168

Telephone 0416 68

0416 680 375 | 0455 485 502

(Not specified)

Telephone Facsimile

Address

+61395743200 +61395743399

nick@neoconsulting.com.au

Email

Au.SampleReceipt.Melbourne@sgs.com

Project N10167
Order Number N10167
Samples 10

Samples Received Report Due

SGS Reference

Wed 20/11/2024 Tue 26/11/2024

ME368667

SUBMISSION DETAILS

This is to confirm that 10 samples were received on Wednesday 20/11/2024. Results are expected to be ready by COB Tuesday 26/11/2024. Please quote SGS reference ME368667 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix

Date documentation received

Sample temperature upon receipt

Turnaround time requested

Sufficient sample for analysis

Samples clearly labelled

Number of eskies/boxes received

1 Soil

20/11/2024

3.8

3 days

Yes

Yes

Amples clearly labelled

Yes

Type of documentation received COC
Samples received in good order Yes
Sample container provider SGS
Samples received in correct containers Yes
Sample cooling method Ice cubs
Complete documentation received Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS

This is bу its General Conditions of Service document issued the Company under accessible limitation of liability, indemnification and jurisdiction issues defined www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the therein.

 SGS Australia Pty Ltd
 t +61 3 9574 3200

 ABN 44 000 964 278
 Environment, Health and
 Bldg 10, 585 Blackburn Rd
 Notting Hill VIC
 Australia
 f +61 3 9574 3399

www.sgs.com.au





### **SAMPLE RECEIPT ADVICE**

- CLIENT DETAILS -

Client NEO CONSULTING PTY LTD

Project N10167

- SUMMARY OF ANALYSIS

| No. | Sample ID | 8270D.SL.01 SVOCs All in<br>Solids/Soils | Fibre Identification in soil | Metals/Elements in Solids | Moisture Content | TRH in soil MA-30.SL.01 | USEPA 8260B Volatile<br>Organic Compounds in | Volatile Petroleum<br>Hydrocarbons in soil |
|-----|-----------|------------------------------------------|------------------------------|---------------------------|------------------|-------------------------|----------------------------------------------|--------------------------------------------|
| 001 | S1        | 54                                       | 3                            | 8                         | 1                | 14                      | 8                                            | 3                                          |
| 002 | S2        | 54                                       | 3                            | 8                         | 1                | 14                      | 8                                            | 3                                          |
| 003 | S3        | 54                                       | 3                            | 8                         | 1                | 14                      | 8                                            | 3                                          |
| 004 | S4        | 54                                       | 3                            | 8                         | 1                | 14                      | 8                                            | 3                                          |
| 005 | S5        | 54                                       | 3                            | 8                         | 1                | 14                      | 8                                            | 3                                          |
| 006 | S6        | 54                                       | 3                            | 8                         | 1                | 14                      | 8                                            | 3                                          |
| 007 | S7        | 54                                       | 3                            | 8                         | 1                | 14                      | 8                                            | 3                                          |
| 008 | S8        | 54                                       | 3                            | 8                         | 1                | 14                      | 8                                            | 3                                          |
| 009 | S9        | 54                                       | 3                            | 8                         | 1                | 14                      | 8                                            | 3                                          |
| 010 | Duplicate | 54                                       | 3                            | 8                         | 1                | 14                      | 8                                            | 3                                          |

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

21/11/2024 Page 2 of 2

The numbers shown in the table indicate the number of results requested in each package.

Please indicate as soon as possible should your request differ from these details

Testing as per this table shall commence immediately unless the client intervenes with a correction .



### APPENDIX C

Relevant Site Data

# NEO CONSULTING



# Property Report

### 10 BEN BULLEN PLACE GOULBURN 2580



### **Property Details**

Address: 10 BEN BULLEN PLACE GOULBURN 2580

Lot/Section 156/-/DP248976

/Plan No:

Council: GOULBURN MULWAREE COUNCIL

### Summary of planning controls

Planning controls held within the Planning Database are summarised below. The property may be affected by additional planning controls not outlined in this report. Please contact your council for more information.

Local Environmental Plans Goulburn Mulwaree Local Environmental Plan 2009 (pub. 6-8-

2021)

Land Zoning R2 - Low Density Residential: (pub. 24-2-2023)

Height Of Building

Floor Space Ratio

NA

Minimum Lot Size

700 m²

Heritage

NA

Land Reservation Acquisition

Foreshore Building Line

NA

### **Detailed planning information**

### State Environmental Planning Policies which apply to this property

State Environmental Planning Policies can specify planning controls for certain areas and/or types of development. They can also identify the development assessment system that applies and the type of environmental assessment that is required.



# Property Report

### 10 BEN BULLEN PLACE GOULBURN 2580

- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Excluded (pub. 21 -10-2022)
- State Environmental Planning Policy (Biodiversity and Conservation) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Exempt and Complying Development Codes) 2008: Land Application (pub. 12-12-2008)
- State Environmental Planning Policy (Housing) 2021: Land Application (pub. 26-11-2021)
- State Environmental Planning Policy (Industry and Employment) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Planning Systems) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Primary Production) 2021: Land Application (pub. 2-12-
- State Environmental Planning Policy (Resilience and Hazards) 2021: Land Application (pub. 2 -12-2021)
- State Environmental Planning Policy (Resources and Energy) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Sustainable Buildings) 2022: Land Application (pub. 29-8-2022)
- State Environmental Planning Policy (Transport and Infrastructure) 2021: Land Application (pub. 2-12-2021)
- State Environmental Planning Policy (Transport and Infrastructure) 2021: Subject Land (pub. 16-12-2022)

### Other matters affecting the property

Information held in the Planning Database about other matters affecting the property appears below. The property may also be affected by additional planning controls not outlined in this report. Please speak to your council for more information

Land near Electrical Infrastructure This property may be located near electrical infrastructure and

could be subject to requirements listed under ISEPP Clause 45. Please contact Essential Energy for more information.

**PFJAR** Local Aboriginal Land Council

South East and Tablelands Regional Plan Boundary

Sydney Drinking Water Catchment Part 6.2 and 6.5 State Environmental Planning Policy Map

(Biodiversity and Conservation) 2021, Section 171A

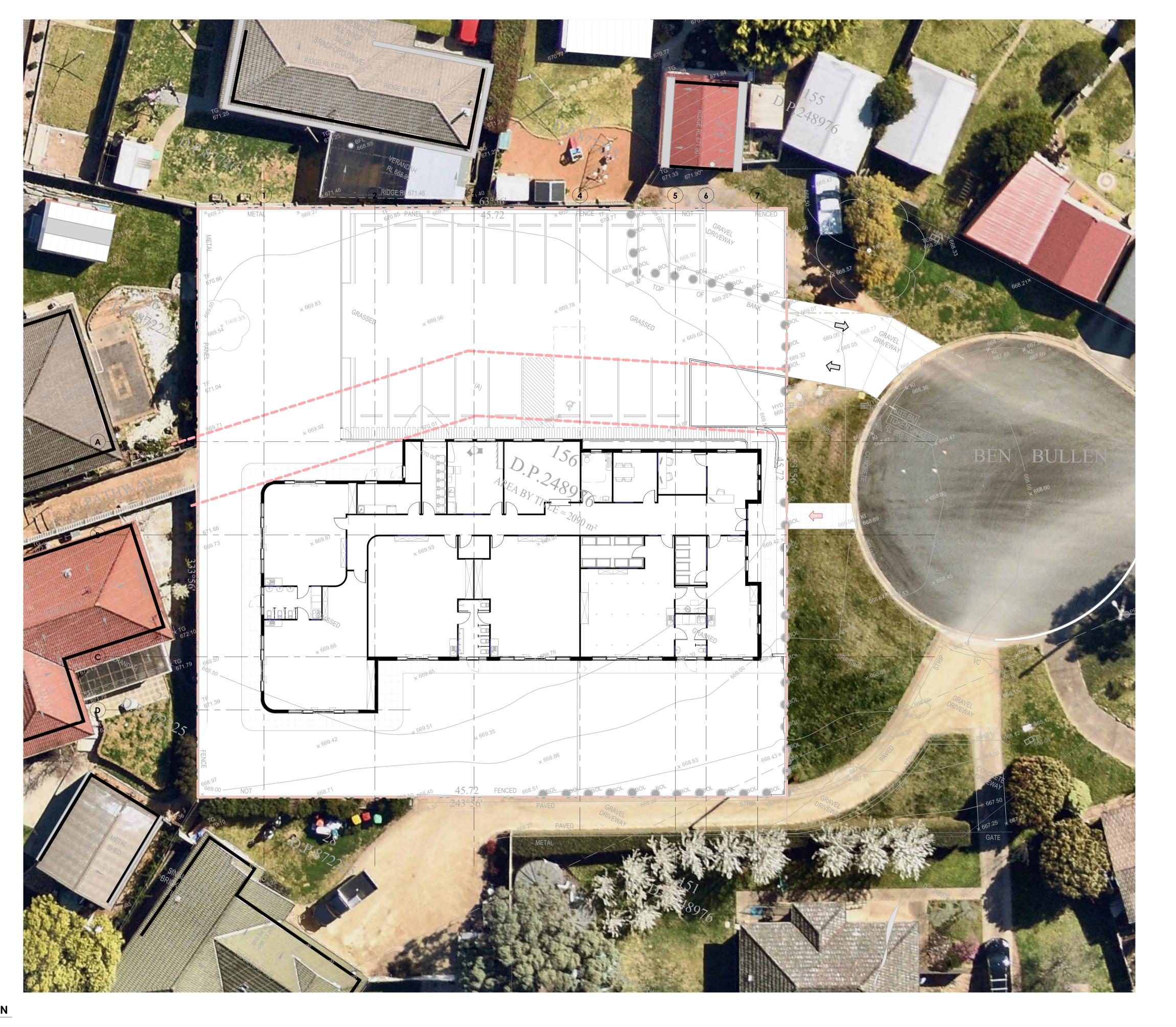
**Environmental Planning and Assessment Regulation 2021** 

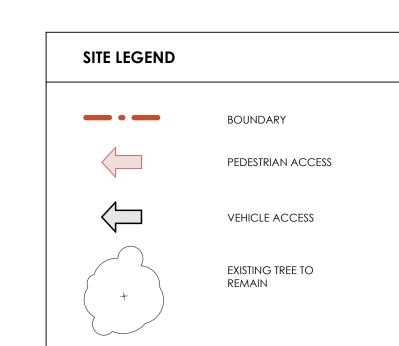
This report provides general information only and does not replace a Section 10.7 Certificate (formerly Section 149)



# PROPOSED CHILDCARE CENTRE 10 BEN BULLEN PLACE, GOULBURN, 2580, NEW SOUTH WALES




| SHEET LIST |                                     |            |          |               |  |  |  |  |  |
|------------|-------------------------------------|------------|----------|---------------|--|--|--|--|--|
| SHEET NO.  | SHEET NAME                          | ISSUE DATE | REVISION | REVISION DATE |  |  |  |  |  |
| DA000      | COVER PAGE                          | 14-11-2024 |          |               |  |  |  |  |  |
| DA101      | SITE PLAN                           | 14-11-2024 |          |               |  |  |  |  |  |
| DA102      | GROUND FLOOR PLAN                   | 14-11-2024 |          |               |  |  |  |  |  |
| DA103      | ROOF PLAN                           | 14-11-2024 |          |               |  |  |  |  |  |
| DA104      | ELEVATIONS                          | 14-11-2024 |          |               |  |  |  |  |  |
| DA105      | SECTIONS                            | 14-11-2024 |          |               |  |  |  |  |  |
| DA106      | 3D VIEW                             | 14-11-2024 |          |               |  |  |  |  |  |
| DA107      | MID WINTER SHADOW DIAGRAMS BY HOURS | 14-11-2024 |          |               |  |  |  |  |  |
| DA108      | VIEW FROM SUN 9 -15                 | 14-11-2024 |          |               |  |  |  |  |  |
| DA109      | FSR PLAN                            | 14-11-2024 |          |               |  |  |  |  |  |
| DA110      | UNECUMBERED AREA PLANS              | 14-11-2024 |          |               |  |  |  |  |  |
| DA111      | NOTIFICATION PLANS                  | 14-11-2024 |          |               |  |  |  |  |  |


PLAN NO: 156/248976 LOT NUMBER: 156

LOCAL AUTHORITY: Goulburn Mulwaree C.
SITE ADDRESS: 10 Ben Bullen PI, Goulburn NSW 2580

### FOR DA

| DATE AMENDMENT | FOR | ISSUE | DATE | AMENDMENT | DRAFTING  |
|----------------|-----|-------|------|-----------|-----------|
|                |     |       |      |           | DRAWN:    |
|                |     |       |      |           | CG        |
|                |     |       |      |           | CHECKED:  |
|                |     |       |      |           | DB        |
|                |     |       |      |           | APPROVED: |
|                |     |       |      |           | DB        |





FOR DA

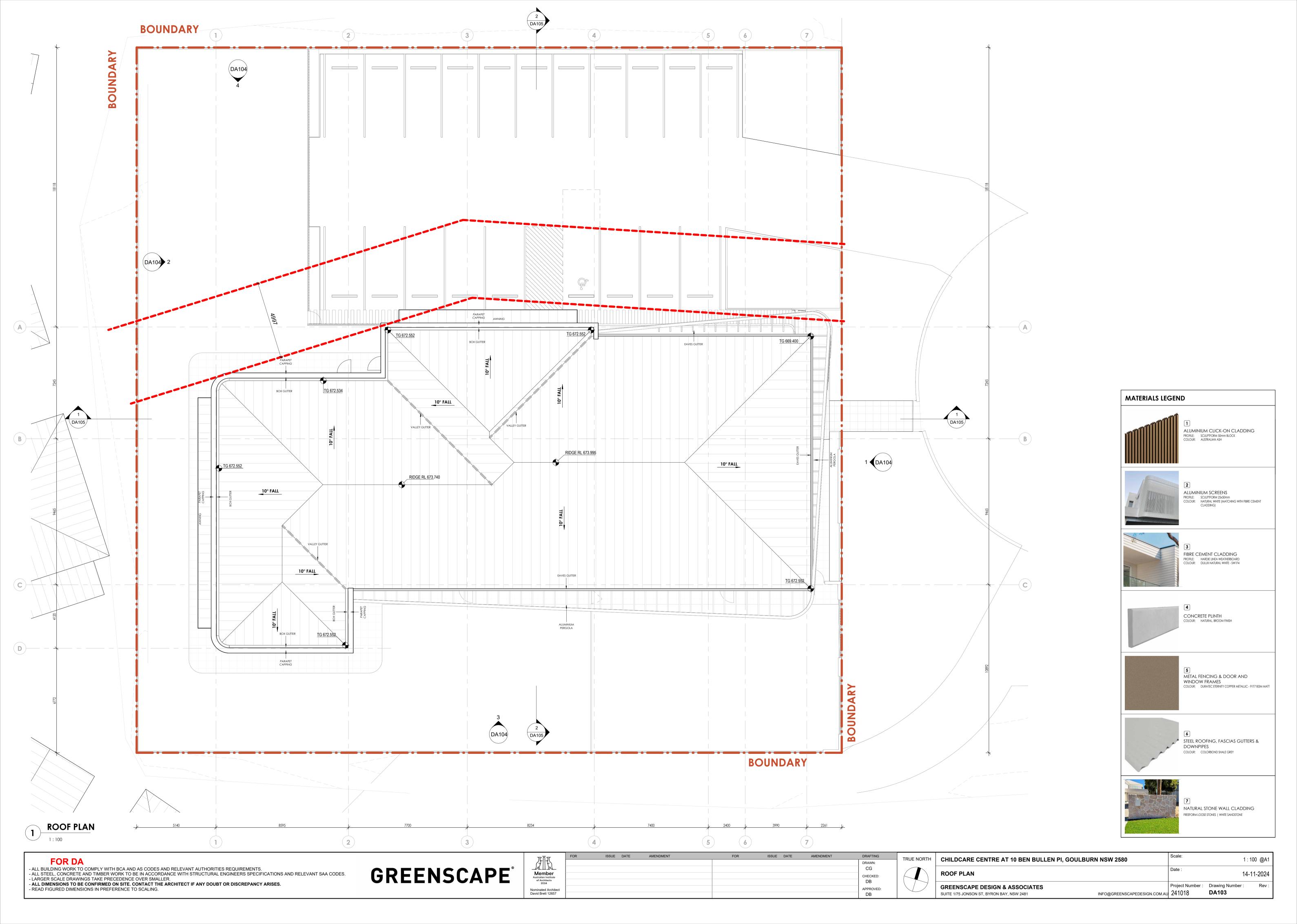
- ALL BUILDING WORK TO COMPLY WITH BCA AND AS CODES AND RELEVANT AUTHORITIES REQUIREMENTS.

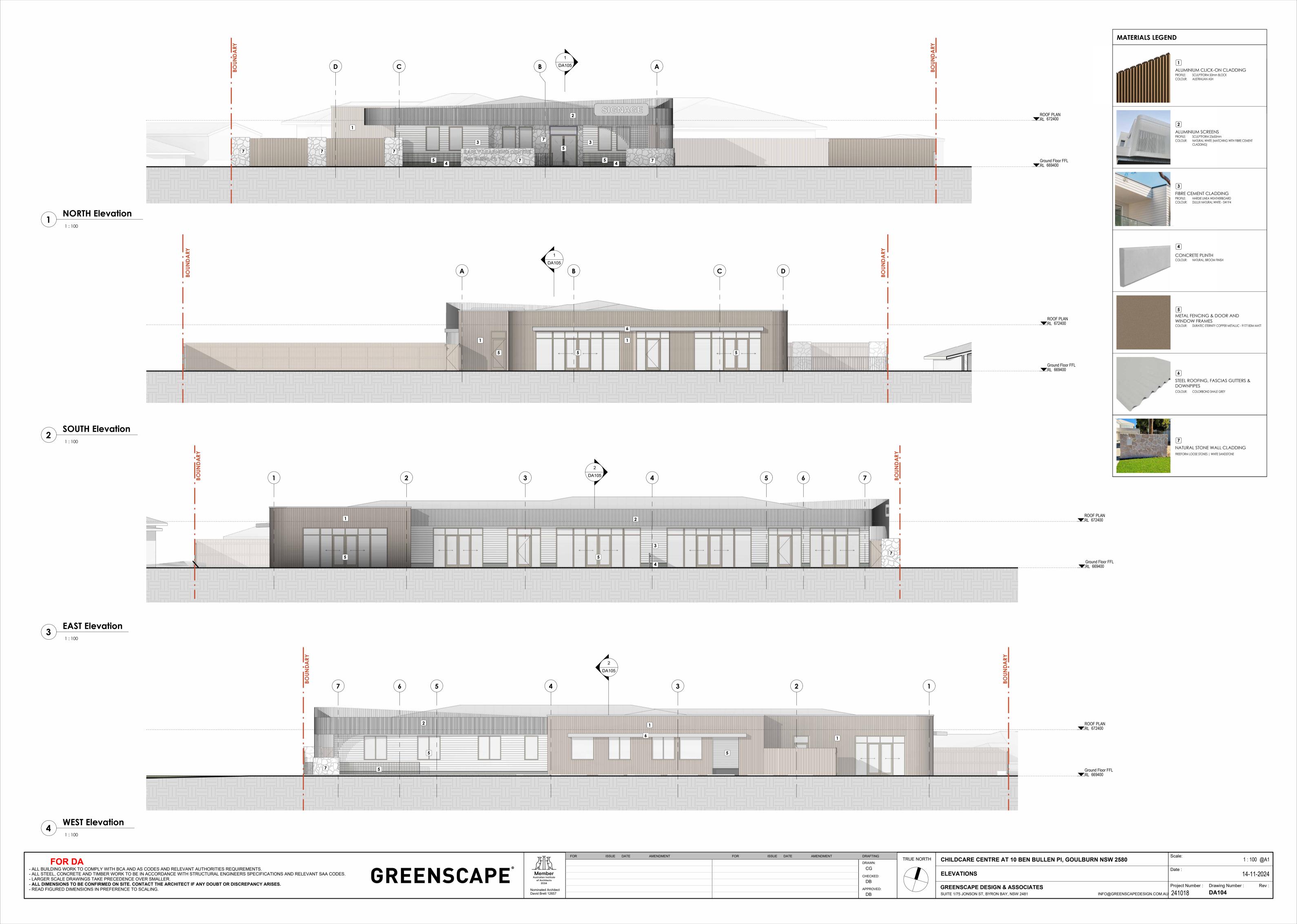
- ALL STEEL, CONCRETE AND TIMBER WORK TO BE IN ACCORDANCE WITH STRUCTURAL ENGINEERS SPECIFICATIONS AND RELEVANT SAA CODES.

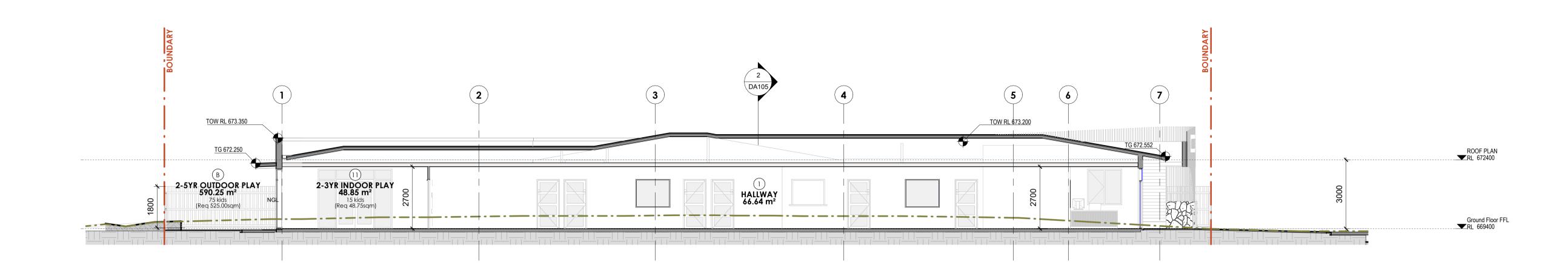
- LARGER SCALE DRAWINGS TAKE PRECEDENCE OVER SMALLER.

- ALL DIMENSIONS TO BE CONFIRMED ON SITE. CONTACT THE ARCHITECT IF ANY DOUBT OR DISCREPANCY ARISES.

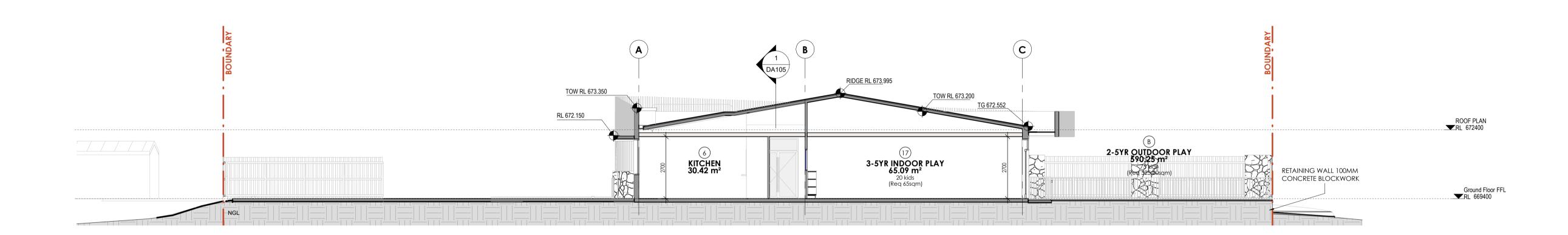
- READ FIGURED DIMENSIONS IN PREFERENCE TO SCALING.


**GREENSCAPE**°


| ਨੁਸੁਟ                       |  |
|-----------------------------|--|
|                             |  |
|                             |  |
| Member Australian Institute |  |
| of Architects<br>2024       |  |
| Nominated Architect         |  |
| David Brett 12657           |  |


|   | FOR | ISSUE | DATE | AMENDMENT | FOR | ISSUE | DATE | AMENDMENT | DRAF |
|---|-----|-------|------|-----------|-----|-------|------|-----------|------|
|   |     |       |      |           |     |       |      |           | DRAV |
|   |     |       |      |           |     |       |      |           | CC   |
|   |     |       |      |           |     |       |      |           | CHEC |
|   |     |       |      |           |     |       |      |           | DE   |
| t |     |       |      |           |     |       |      |           | APPR |
|   |     |       |      |           |     |       |      |           | DE   |

| RUE NORTH | CHILDCARE CENTRE AT 10 BEN BULLEN PI, GOULBUF                            | RN NSW 2580                  | Scale:                  | As indicate                   | ed @A1 |
|-----------|--------------------------------------------------------------------------|------------------------------|-------------------------|-------------------------------|--------|
|           | SITE PLAN                                                                |                              | Date :                  | 14-1                          | 1-2024 |
|           | GREENSCAPE DESIGN & ASSOCIATES SUITE 1/75 JONSON ST, BYRON BAY, NSW 2481 | INFO@GREENSCAPEDESIGN.COM.AU | Project Number : 241018 | Drawing Number : <b>DA101</b> | Rev :  |










1 LONG SECTION



Scale:

Project Number : Drawing Number :

DA105

1:100 @A1

14-11-2024



FRONT ENTRANCE



0-2YR FACADE

FOR DA

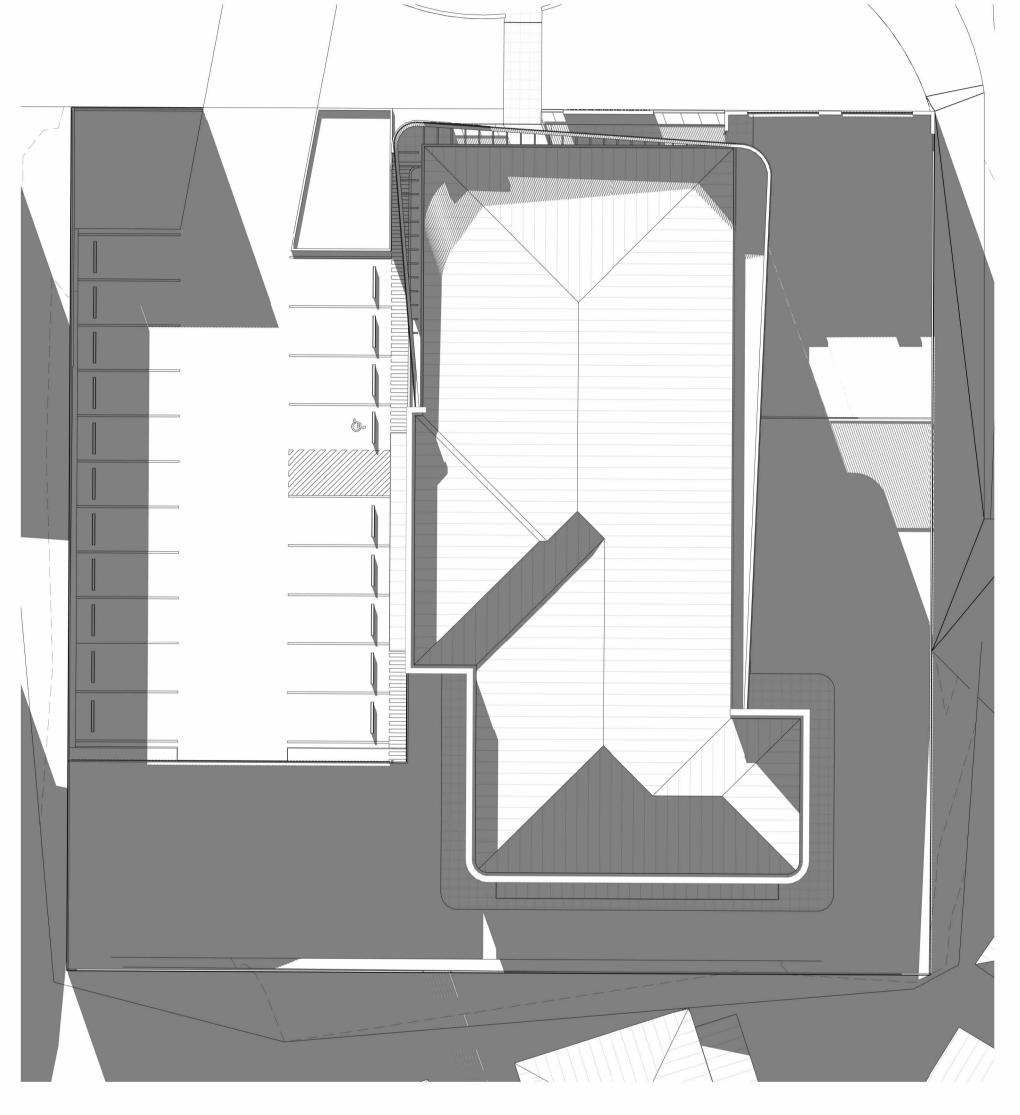
- ALL BUILDING WORK TO COMPLY WITH BCA AND AS CODES AND RELEVANT AUTHORITIES REQUIREMENTS.

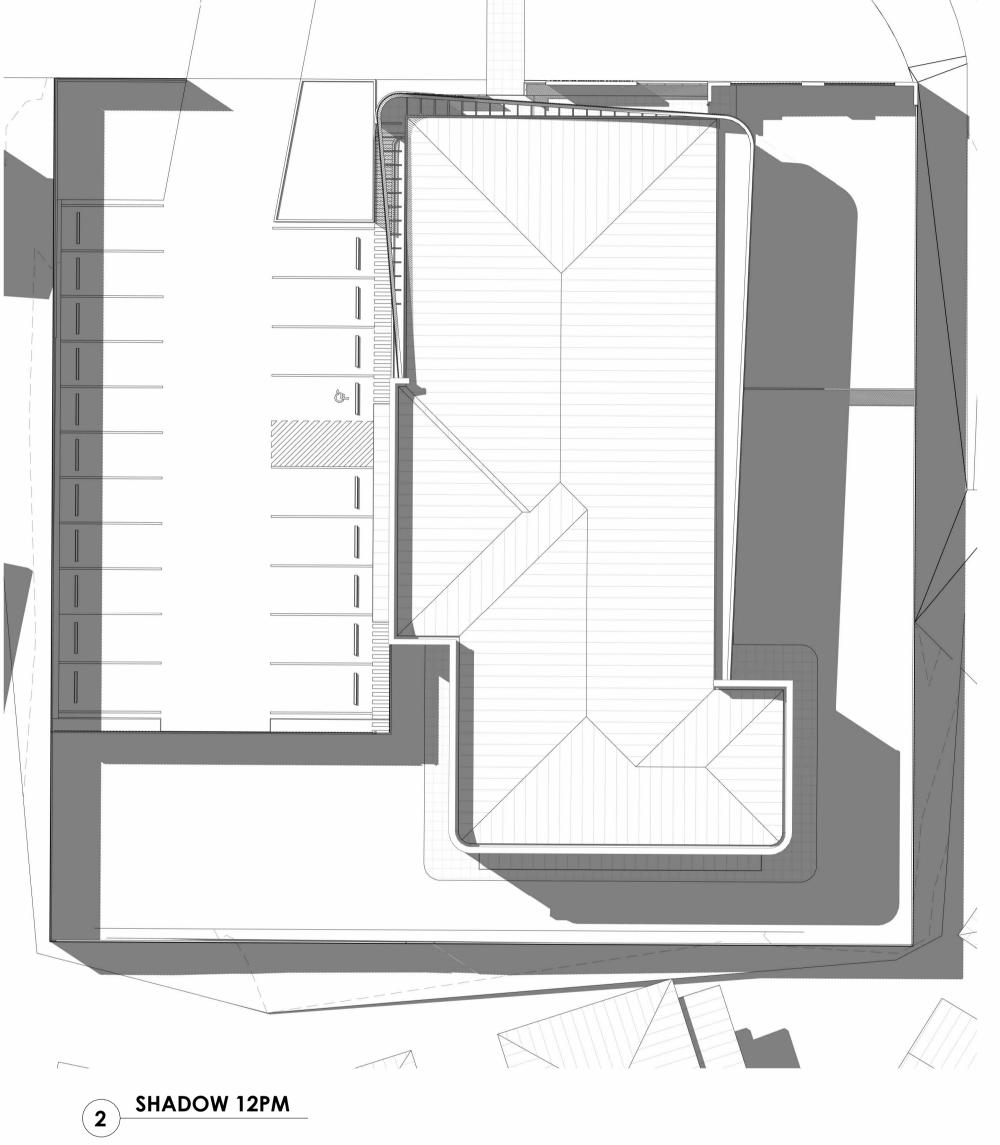
- ALL STEEL, CONCRETE AND TIMBER WORK TO BE IN ACCORDANCE WITH STRUCTURAL ENGINEERS SPECIFICATIONS AND RELEVANT SAA CODES.

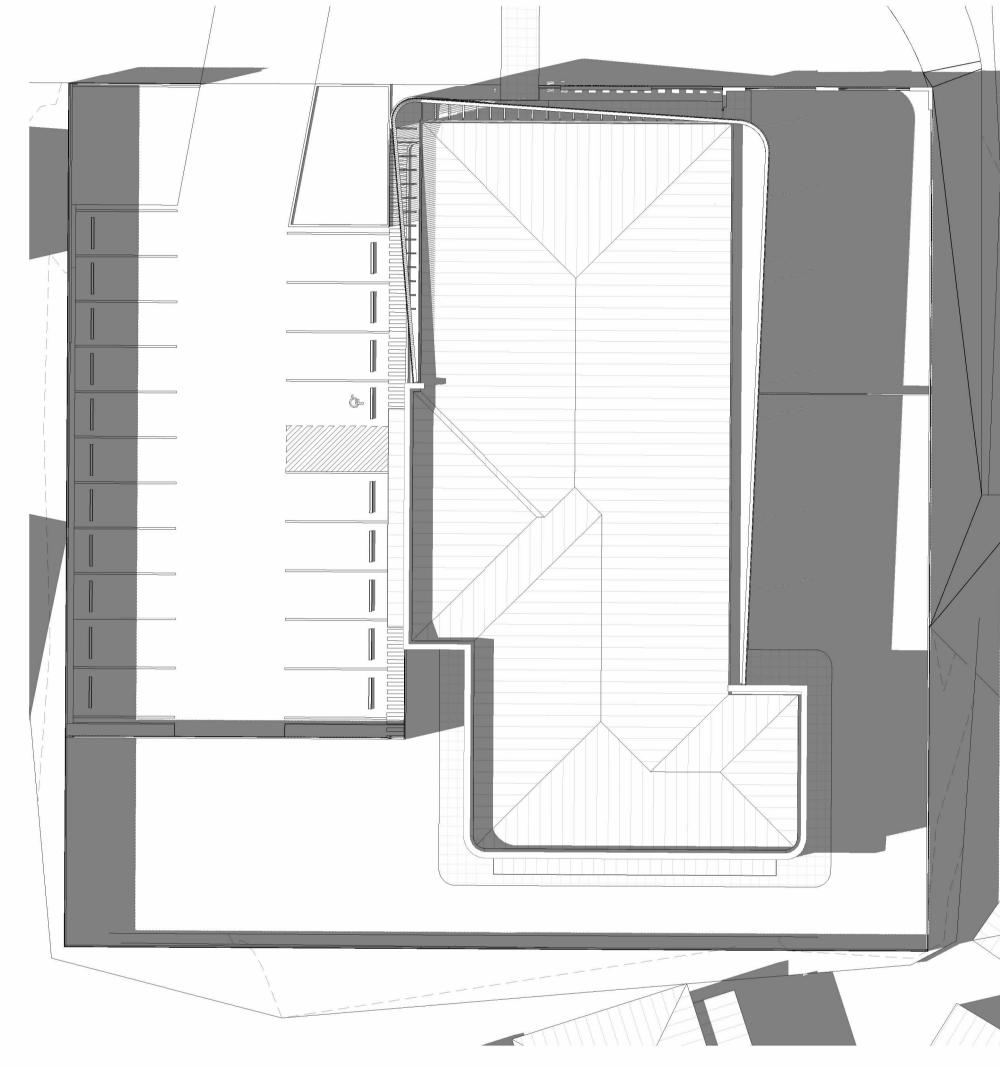
- LARGER SCALE DRAWINGS TAKE PRECEDENCE OVER SMALLER.

- ALL DIMENSIONS TO BE CONFIRMED ON SITE. CONTACT THE ARCHITECT IF ANY DOUBT OR DISCREPANCY ARISES.

- READ FIGURED DIMENSIONS IN PREFERENCE TO SCALING.


**GREENSCAPE®** 


| Member Australian Institute of Architects 2024 |   |
|------------------------------------------------|---|
| Nominated Architect                            |   |
| David Brett 12657                              | l |
|                                                |   |


|     | FOR | ISSUE | DATE | AMENDMENT | FOR | ISSUE | DATE | AMENDMENT | DRAFT |
|-----|-----|-------|------|-----------|-----|-------|------|-----------|-------|
|     |     |       |      |           |     |       |      |           | DRAW  |
|     |     |       |      |           |     |       |      |           | CG    |
|     |     |       |      |           |     |       |      |           | CHECK |
|     |     |       |      |           |     |       |      |           | DB    |
| ect |     |       |      |           |     |       |      |           | APPRO |
| •   |     |       |      |           |     |       |      |           | DB    |
|     |     |       |      |           |     |       |      |           |       |

| ۱ | CHILDCARE CENTRE AT 10 BEN BULLEN PI, GOULBURI                           | Scale:                       |                         |                        |    |
|---|--------------------------------------------------------------------------|------------------------------|-------------------------|------------------------|----|
|   | 3D VIEW                                                                  |                              | Date :                  | 14-1                   | 1- |
|   | GREENSCAPE DESIGN & ASSOCIATES SUITE 1/75 JONSON ST, BYRON BAY, NSW 2481 | INFO@GREENSCAPEDESIGN.COM.AU | Project Number : 241018 | Drawing Number : DA106 |    |

14-11-2024







1 SHADOW 9AM

3 SHADOW 15PM

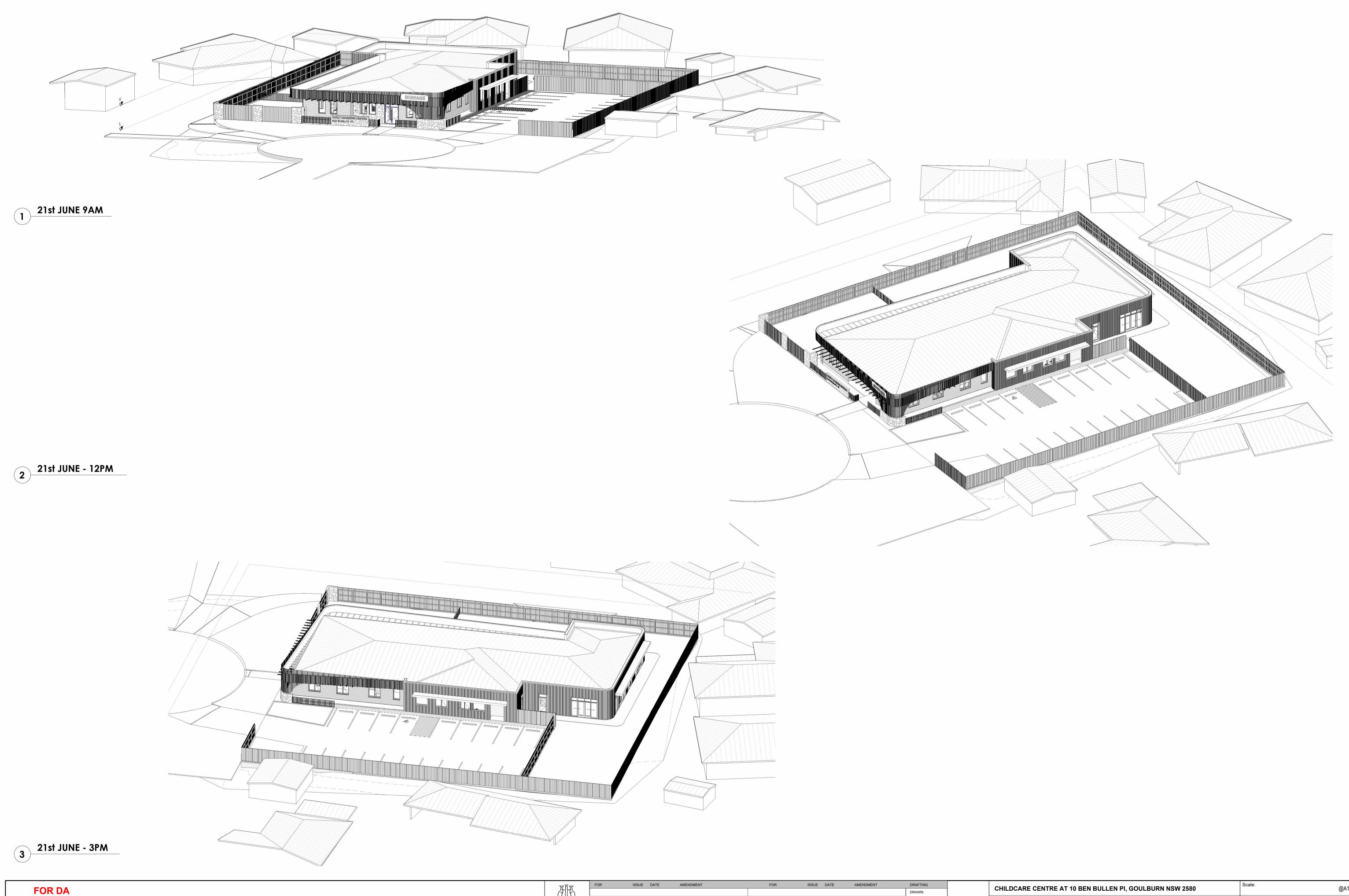
FOR DA

- ALL BUILDING WORK TO COMPLY WITH BCA AND AS CODES AND RELEVANT AUTHORITIES REQUIREMENTS.

- ALL STEEL, CONCRETE AND TIMBER WORK TO BE IN ACCORDANCE WITH STRUCTURAL ENGINEERS SPECIFICATIONS AND RELEVANT SAA CODES.

- LARGER SCALE DRAWINGS TAKE PRECEDENCE OVER SMALLER.

- ALL DIMENSIONS TO BE CONFIRMED ON SITE. CONTACT THE ARCHITECT IF ANY DOUBT OR DISCREPANCY ARISES.


- READ FIGURED DIMENSIONS IN PREFERENCE TO SCALING.

**GREENSCAPE**°

| 7 ਹਿੰਦ                                | FO |
|---------------------------------------|----|
|                                       |    |
|                                       |    |
| Member                                |    |
| Australian Institute<br>of Architects |    |
| 2024                                  |    |
| Nominated Architect                   |    |
| David Brett 12657                     |    |
|                                       | l  |

| л              | FOR | ISSUE | DATE | AMENDMENT | FOR | ISSUE | DATE | AMENDMENT | DRAFTING |
|----------------|-----|-------|------|-----------|-----|-------|------|-----------|----------|
|                |     |       |      |           |     |       |      |           | DRAWN:   |
| [y]            |     |       |      |           |     |       |      |           | CG       |
| oer<br>stitute |     |       |      |           |     |       |      |           | CHECKED: |
| cts            |     |       |      |           |     |       |      |           | DB       |
| Architect      |     |       |      |           |     |       |      |           | APPROVED |
| 12657          |     |       |      |           |     |       |      |           | DB       |

|  | CHILDCARE CENTRE AT 10 BEN BULLEN PI, GOULBUR                            | Scale:                       |                         |                        |       |
|--|--------------------------------------------------------------------------|------------------------------|-------------------------|------------------------|-------|
|  | MID WINTER SHADOW DIAGRAMS BY HOURS                                      | Date : 14-11-20              |                         | 1-2024                 |       |
|  | GREENSCAPE DESIGN & ASSOCIATES SUITE 1/75 JONSON ST, BYRON BAY, NSW 2481 | INFO@GREENSCAPEDESIGN.COM.AU | Project Number : 241018 | Drawing Number : DA107 | Rev : |



- ALL BUILDING WORK TO COMPLY WITH BCA AND AS CODES AND RELEVANT AUTHORITIES REQUIREMENTS.
- ALL STEEL, CONCRETE AND TIMBER WORK TO BE IN ACCORDANCE WITH STRUCTURAL ENGINEERS SPECIFICATIONS AND RELEVANT SAA CODES.
- LARGER SCALE DRAWINGS TAKE PRECEDENCE OVER SMALLER.
- ALL DIMENSIONS TO BE CONFIRMED ON SITE. CONTACT THE ARCHITECT IF ANY DOUBT OR DISCREPANCY ARISES.
- READ FIGURED DIMENSIONS IN PREFERENCE TO SCALING.

**GREENSCAPE**°

|   | । ७०५                       |  |
|---|-----------------------------|--|
|   |                             |  |
| ) |                             |  |
|   | Member Australian Institute |  |
|   | of Architects<br>2024       |  |
|   | Nominated Architect         |  |
|   | David Brett 12657           |  |
|   |                             |  |

|  |  | CHILDCARE CENTRE AT 10 BEN BULLEN PI, GOULBURN                           | Gene.                        |        |                        |         |
|--|--|--------------------------------------------------------------------------|------------------------------|--------|------------------------|---------|
|  |  | VIEW FROM SUN 9 -15                                                      |                              | Date : | <b>14</b> -1           | 11-2024 |
|  |  | GREENSCAPE DESIGN & ASSOCIATES SUITE 1/75 JONSON ST, BYRON BAY, NSW 2481 | INFO@GREENSCAPEDESIGN.COM.AU | ,      | Drawing Number : DA108 | Rev :   |

CHECKED: DB

APPROVED:



FSR GROUND FLOOR

1:100

AMENDMENT

ISSUE DATE

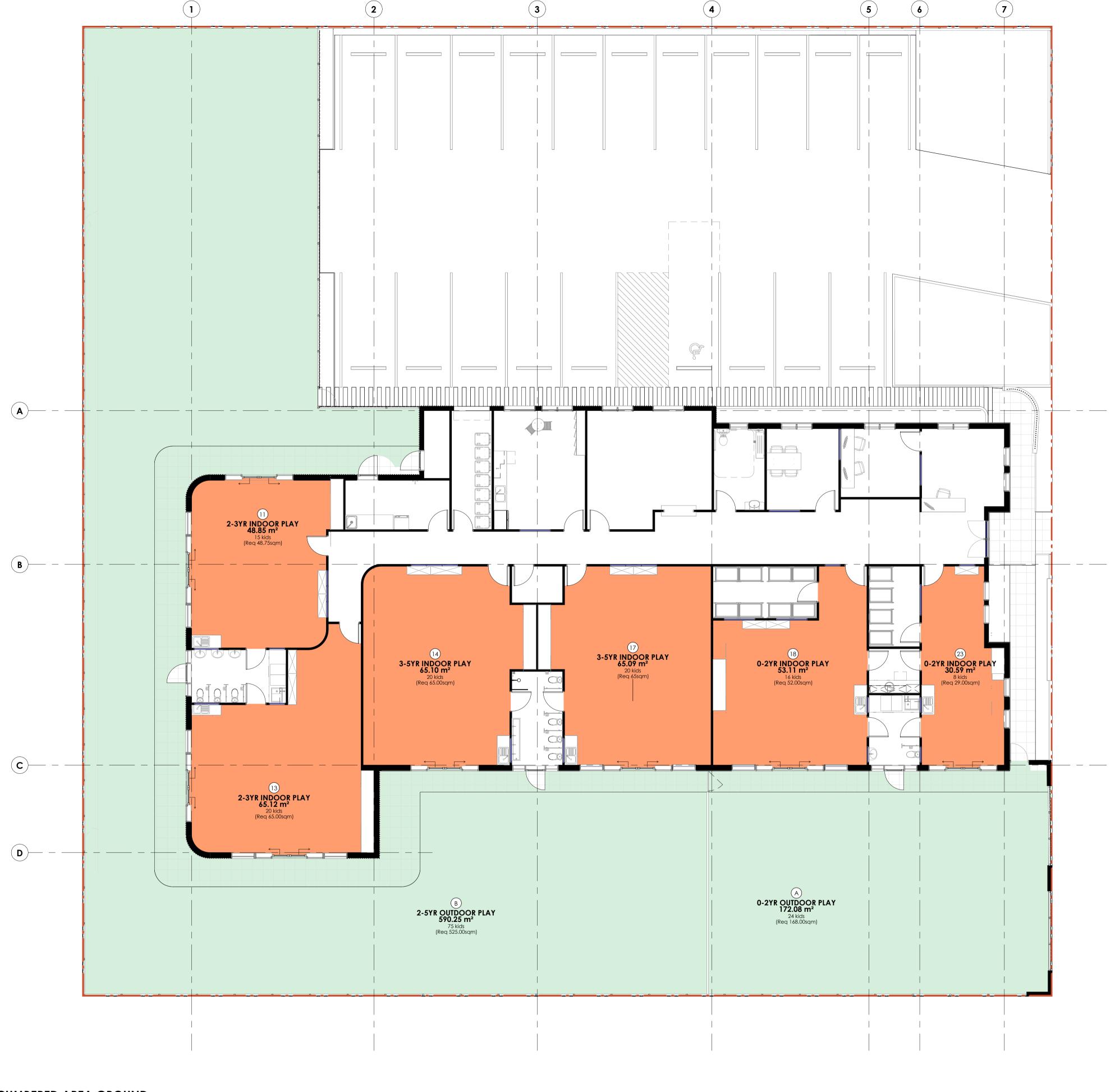
ISSUE DATE AMENDMENT

DRAFTING

DRAWN: CG

CHECKED: DB

APPROVED:


TRUE NORTH CHILDCARE CENTRE AT 10 BEN BULLEN PI, GOULBURN NSW 2580 1:100 @A1 **FSR PLAN** 14-11-2024 Project Number: Drawing Number: **GREENSCAPE DESIGN & ASSOCIATES** INFO@GREENSCAPEDESIGN.COM.AU 241018 **DA109** SUITE 1/75 JONSON ST, BYRON BAY, NSW 2481

Total Combined Floor Area of Habitable Rooms = **569,88m2** 

Total Site Area **2089.45m² FSR = 0.27:1** 

| FOR DA                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - ALL BUILDING WORK TO COMPLY WITH BCA AND AS CODES AND RELEVANT AUTHORITIES REQUIREMENTS.                                                                                    |
| - ALL STEEL, CONCRETE AND TIMBER WORK TO BE IN ACCORDANCE WITH STRUCTURAL ENGINEERS SPECIFICATIONS AND RELEVANT SAA CODES LARGER SCALE DRAWINGS TAKE PRECEDENCE OVER SMALLER. |
| - ALL DIMENSIONS TO BE CONFIRMED ON SITE. CONTACT THE ARCHITECT IF ANY DOUBT OR DISCREPANCY ARISES.                                                                           |
| - READ FIGURED DIMENSIONS IN PREFERENCE TO SCALING.                                                                                                                           |

| EENSCAPE® | Member Australian Institute of Architects 2024 Nominated Architect |
|-----------|--------------------------------------------------------------------|
|           | David Brett 12657                                                  |





FOR DA

- ALL BUILDING WORK TO COMPLY WITH BCA AND AS CODES AND RELEVANT AUTHORITIES REQUIREMENTS.

- ALL STEEL, CONCRETE AND TIMBER WORK TO BE IN ACCORDANCE WITH STRUCTURAL ENGINEERS SPECIFICATIONS AND RELEVANT SAA CODES.

- LARGER SCALE DRAWINGS TAKE PRECEDENCE OVER SMALLER.

- ALL DIMENSIONS TO BE CONFIRMED ON SITE. CONTACT THE ARCHITECT IF ANY DOUBT OR DISCREPANCY ARISES.

- READ FIGURED DIMENSIONS IN PREFERENCE TO SCALING.

**GREENSCAPE**°

| 7 ਹਿੱਧ                                | F |
|---------------------------------------|---|
|                                       |   |
|                                       |   |
| Member<br>Australian Institute        |   |
| of Architects                         |   |
| 2024                                  |   |
| Nominated Architect David Brett 12657 |   |
| David Brett 12007                     |   |

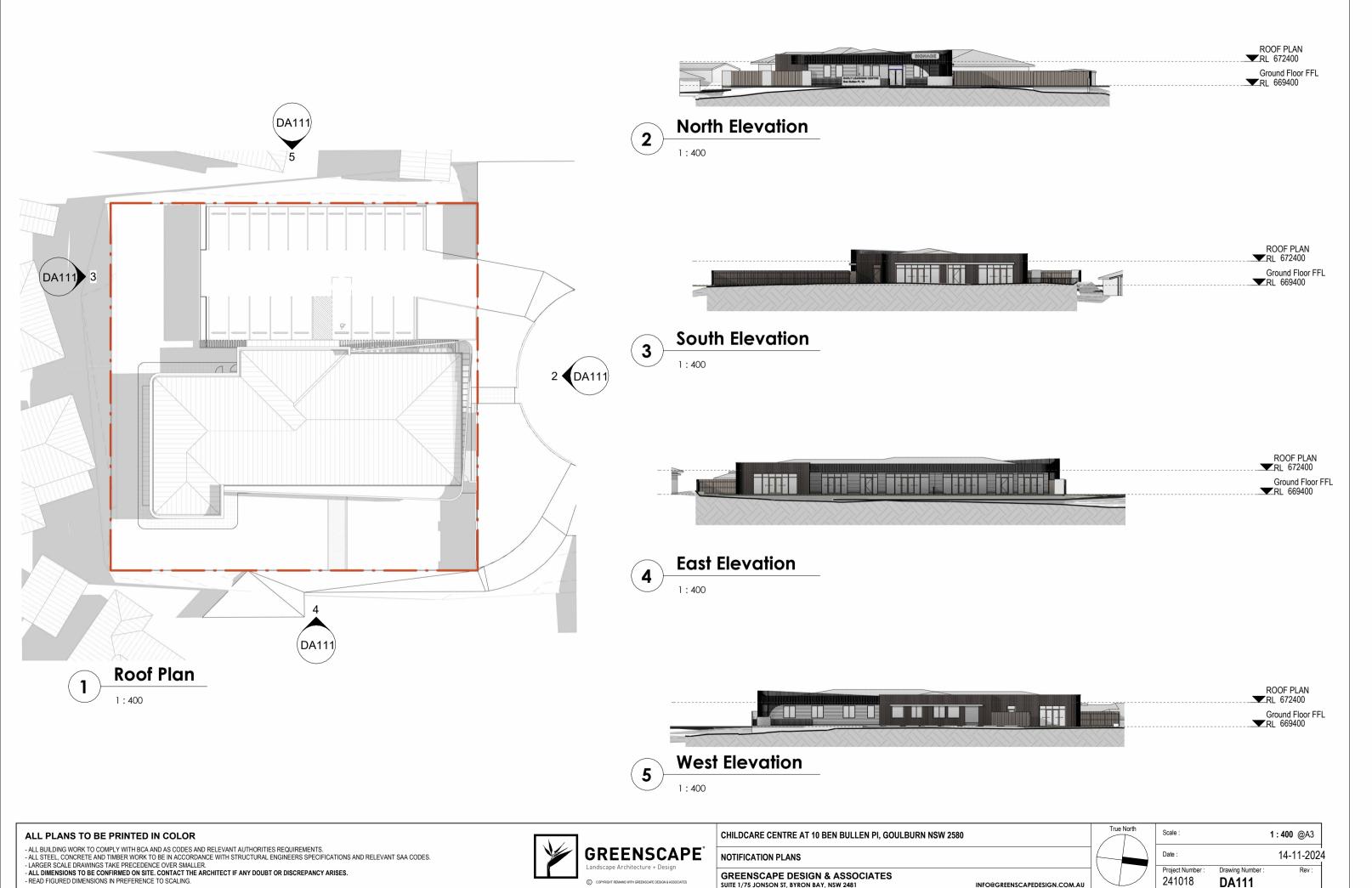
|   | FOR | ISSUE | DATE | AMENDMENT | FOR | ISSUE | DATE | AMENDMENT | DRAFTING  |
|---|-----|-------|------|-----------|-----|-------|------|-----------|-----------|
|   |     |       |      |           |     |       |      |           | DRAWN:    |
|   |     |       |      |           |     |       |      |           | CG        |
|   |     |       |      |           |     |       |      |           | CHECKED:  |
|   |     |       |      |           |     |       |      |           | DB        |
| t |     |       |      |           |     |       |      |           | APPROVED: |
|   |     |       |      |           |     |       |      |           | DB        |

TRUE NORTH

CHILDCARE C

UNECUMBERE

GREENSCAPE
SUITE 1/75 JONSON S


| CHILDCARE CENTRE AT 10 BEN BULLEN PI, GOULBURN NSW 2580                  |                              | Scale: 1:100 @A1        |                        |       |
|--------------------------------------------------------------------------|------------------------------|-------------------------|------------------------|-------|
| UNECUMBERED AREA PLANS                                                   |                              | Date :                  | 14-11-2024             |       |
| GREENSCAPE DESIGN & ASSOCIATES SUITE 1/75 JONSON ST, BYRON BAY, NSW 2481 | INFO@GREENSCAPEDESIGN.COM.AU | Project Number : 241018 | Drawing Number : DA110 | Rev : |

UNENCUMBERED AREA

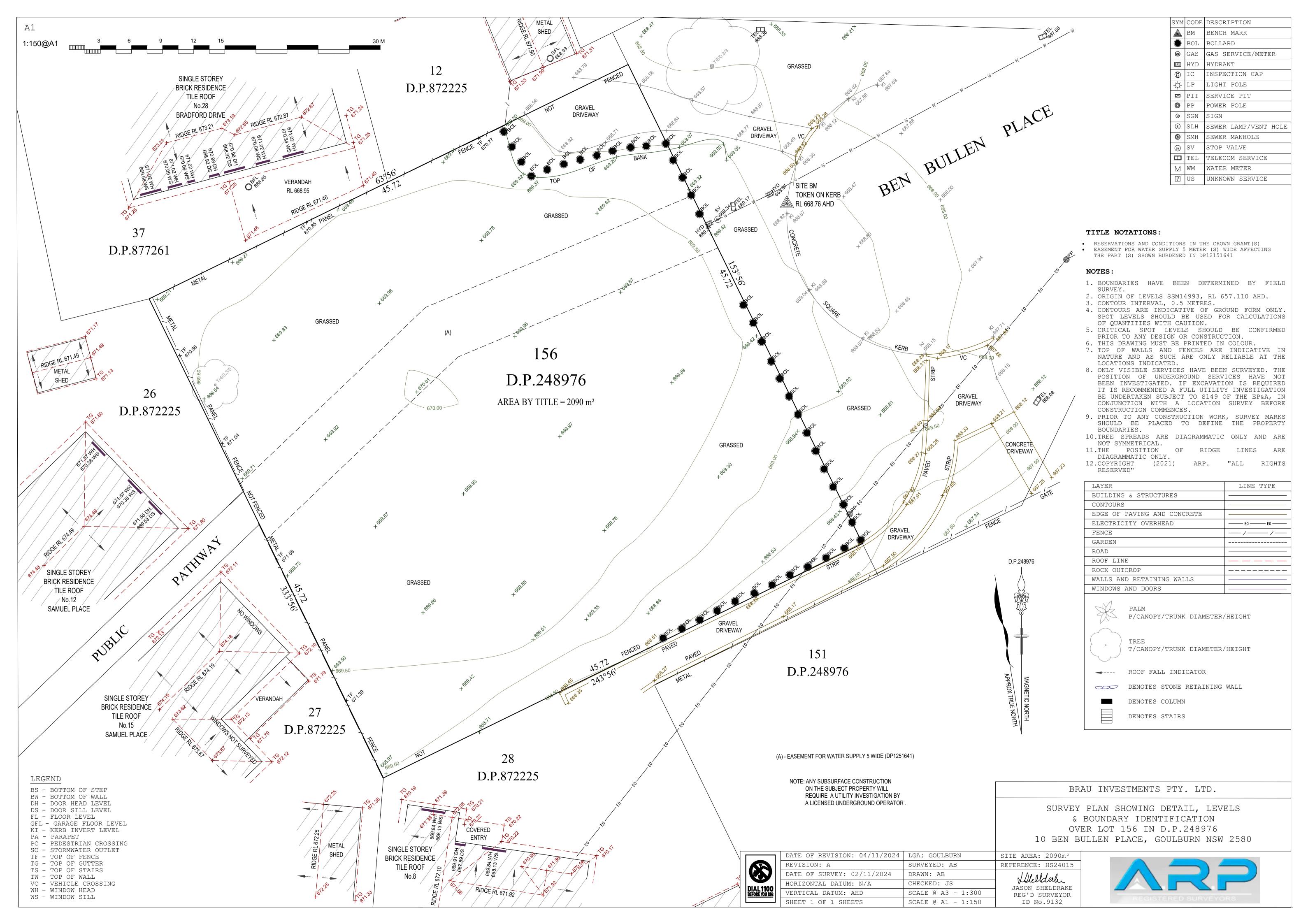
**—** • **—** Boundary

Total Combined Indoor Play Unencumbered Area = **762.33 m2** 

Total Combined Outdoor Play Unencumbered Area = **327.86 m2** 



**GREENSCAPE DESIGN & ASSOCIATES** 


SUITE 1/75 JONSON ST, BYRON BAY, NSW 2481

Drawing Number :

**DA111** 

241018

INFO@GREENSCAPEDESIGN.COM.AU

